Journal of Biological Chemistry
Volume 276, Issue 40, 5 October 2001, Pages 37514-37519
Journal home page for Journal of Biological Chemistry

LIPIDS AND LIPOPROTEINS
HIV Protease Inhibitor Induces Fatty Acid and Sterol Biosynthesis in Liver and Adipose Tissues Due to the Accumulation of Activated Sterol Regulatory Element-binding Proteins in the Nucleus*

https://doi.org/10.1074/jbc.M104557200Get rights and content
Under a Creative Commons license
open access

The mechanism by which human immunodeficiency virus (HIV) protease inhibitor therapy adversely induces lipodystrophy and hyperlipidemia has not been defined. This study explored the mechanism associated with the adverse effects of the prototype protease inhibitor ritonavir in mice. Ritonavir treatment increased plasma triglyceride and cholesterol levels through increased fatty acid and cholesterol biosynthesis in adipose and liver. Ritonavir treatment also resulted in hepatic steatosis and hepatomegaly. These abnormalities, which were especially pronounced after feeding a Western type high fat diet, were due to ritonavir-induced accumulation of the activated forms of sterol regulatory binding protein (SREBP)-1 and -2 in the nucleus of liver and adipose, resulting in elevated expression of lipid metabolism genes. Interestingly, protease inhibitor treatment did not alter SREBP mRNA levels in these tissues. Thus, the adverse lipid abnormalities associated with protease inhibitor therapy are caused by the constitutive induction of lipid biosynthesis in liver and adipose tissues due to the accumulation of activated SREBP in the nucleus.

Cited by (0)

Published, JBC Papers in Press, DOI 10.1074/jbc.M104557200

*

This work was supported by National Institutes of Health Grant HL65915.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.