Journal of Biological Chemistry
Volume 277, Issue 48, 29 November 2002, Pages 46391-46401
Journal home page for Journal of Biological Chemistry

MECHANISMS OF SIGNAL TRANSDUCTION
Pituitary Adenylate Cyclase-activating Polypeptide Stimulates Nitric-oxide Synthase Type I Expression and Potentiates the cGMP Response to Gonadotropin-releasing Hormone of Rat Pituitary Gonadotrophs*

https://doi.org/10.1074/jbc.M203763200Get rights and content
Under a Creative Commons license
open access

Nitric-oxide synthase type I (NOS I) is expressed primarily in gonadotrophs and in folliculo-stellate cells of the anterior pituitary. In gonadotrophs, the expression and the activity of NOS I are stimulated by gonadotropin-releasing hormone (GnRH) under both experimental and physiological conditions. In the present study, we show that pituitary adenylate cyclase-activating polypeptide (PACAP) is twice as potent as GnRH at increasing NOS I levels in cultured rat anterior pituitary cells. The action of PACAP is detectable after 4–6 h and maximal at 24 h, this effect is mimicked by 8-bromo-cAMP and cholera toxin and suppressed by H89 suggesting a mediation through the cAMP pathway. Surprisingly, NADPH diaphorase staining revealed that these changes occurred in gonadotrophs exclusively although PACAP and cAMP, in contrast to GnRH, have the potential to target several types of pituitary cells including folliculo-stellate cells. There was no measurable alteration in NOS I mRNA levels after cAMP or PACAP induction. PACAP also stimulated cGMP synthesis, which was maximal within 15 min and independent of cAMP, however, only part resulted from NOS I/soluble guanylate cyclase activation implying that in contrast to GnRH, PACAP has a dual mechanism in cGMP production. Interestingly, induction of NOS I by PACAP markedly enhanced the capacity of gonadotrophs to produce cGMP in response to GnRH. The fact that PACAP may act on gonadotrophs to alter NOS I levels, generate cGMP, and potentiate the cGMP response to GnRH, suggests that cGMP could play important cellular functions.

Cited by (0)

*

This work was supported in part by grants from the CNRS and the Université Pierre et Marie Curie.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Recipient of funds from the Chancellerie des Universités de Paris, the Association pour la Recherche sur le Cancer, and the Fondation pour la Recherche Médicale.

§

Recipient of funds from the Ministère de l'Education Nationale, de la Recherche et de la Technologie, and the Association pour la Recherche sur le Cancer.