Protein Synthesis, Post-Translation Modification, and Degradation
Presenilin/γ-Secretase-mediated Cleavage of the Voltage-gated Sodium Channel β2-Subunit Regulates Cell Adhesion and Migration*

https://doi.org/10.1074/jbc.M412938200Get rights and content
Under a Creative Commons license
open access

The voltage-gated sodium channel β2-subunit (β2) is a member of the IgCAM superfamily and serves as both an adhesion molecule and an auxiliary subunit of the voltage-gated sodium channel. Here we found that β2 undergoes ectodomain shedding followed by presenilin (PS)-dependent γ-secretase-mediated cleavage. 12-O-Tetradecanoylphorbol-13-acetate treatment or expression of an α-secretase enzyme, ADAM10, resulted in ectodomain cleavage of β2 in Chinese hamster ovary cells. Subsequent cleavage of the remaining 15-kDa C-terminal fragment (β2-CTF) was independently inhibited by three specific γ-secretase inhibitors, expression of the dominant negative form of PS1, and in PS1/PS2 knock-out cells. γ-Secretase inhibitor treatment also increased endogenous β2-CTF levels in neuroblastoma cells and mouse primary neuronal cultures. In a cell-free γ-secretase assay, we detected γ-secretase activity-dependent generation of a 12 kDa β2 intracellular domain (ICD), which was loosely associated with the membrane fraction. To assess the functional role of β2 processing by γ-secretase, we tested whether N-[N-(3,5-difluorophenylacetyl-l-alanyl)]-S-phenylglycine t-butylester (DAPT), a specific γ-secretase inhibitor, would alter β2-mediated cell adhesion and migration. We found that DAPT inhibited cell-cell aggregation and migration in a wound healing assay carried out with Chinese hamster ovary cells expressing β2. DAPT also reduced migration of neuroblastoma cells in a modified Boyden chamber assay. Since DAPT treatment resulted in increased β2-CTF levels, we also tested whether β2-CTFs or β2-ICDs would directly affect cell migration by overexpressing recombinant proteins. Interestingly, elevated levels of β2-CTFs, but not ICDs, also blocked cell migration by 81 to 93%. Together, our findings show for the first time that β2 is a PS/γ-secretase substrate and γ-secretase mediated cleavage of β2-CTF is required for cell-cell adhesion and migration of β2-expressing cells.

Cited by (0)

*

This work was supported by grants from the National Institutes of Health/NIA. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S3.

These authors contributed equally to this work.