Mechanisms of Signal Transduction
The Carboxyl-terminal Fragment of Pro-HB-EGF Reverses Bcl6-mediated Gene Repression*

https://doi.org/10.1074/jbc.M611036200Get rights and content
Under a Creative Commons license
open access

Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a member of the EGF family, is synthesized as a type I transmembrane precursor (pro-HB-EGF). Ectodomain shedding of pro-HB-EGF yields an amino-terminal soluble ligand of EGF receptor (HB-EGF) and a carboxyl-terminal fragment (HB-EGF-CTF) consisting of the transmembrane and cytoplasmic domains. We previously showed that the HB-EGF-CTF translocates from the plasma membrane to the nucleus and plays a role as a signaling molecule. Immunoprecipitation showed that HB-EGF-CTF can associate with Bcl6, a transcriptional repressor in mammalian cells. A glutathione S-transferase pulldown assay revealed that HB-EGF-CTF interacted efficiently with zinc fingers 4–6 of Bcl6. A luciferase reporter assay showed that the nuclear translocation of HB-EGF-CTF following shedding reversed transcriptional repression of cyclin D2 by Bcl6. Additionally, the level of cyclin D2 protein increased and Bcl6 interaction with the cyclin D2 promoter decreased in parallel with the shedding of pro-HB-EGF at all endogenous levels. These findings suggest that HB-EGF-CTF is a potent regulator of gene expression via its interaction with the transcriptional repressor Bcl6.

Cited by (0)

*

This work was supported by Grants-in-aid for Scientific Research (17014068 and 17390081 to S. H.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Japan Society for the Promotion of Science. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.