Journal of Biological Chemistry
Volume 282, Issue 43, 26 October 2007, Pages 31766-31776
Journal home page for Journal of Biological Chemistry

Mechanisms of Signal Transduction
Mammary Epithelial-specific Deletion of the Focal Adhesion Kinase Gene Leads to Severe Lobulo-Alveolar Hypoplasia and Secretory Immaturity of the Murine Mammary Gland*

https://doi.org/10.1074/jbc.M705403200Get rights and content
Under a Creative Commons license
open access

Integrin-mediated cell adhesion and signaling is required for mammary gland development and functions. As a major mediator of integrin signaling, focal adhesion kinase (FAK) has been implicated to play a role in the survival, proliferation, and differentiation of mammary epithelial cells in previously studies in vitro. To assess the role of FAK in vivo, we created mice in which FAK is selectively deleted in mammary epithelial cells. The mammary gland FAK conditional knock-out (MFCKO) mice are viable, fertile, and macroscopically indistinguishable from the control littermates. In virgin MFCKO mice, mammary ductal elongation is retarded at 5 weeks of age but reaches the full extent by 8 weeks of age compared with the control mice. However, the MFCKO females are unable to nurse their pups due to severe lobulo-alveolar hypoplasia and secretory immaturity during pregnancy and lactation. Analysis of the mammary epithelial cells in MFCKO mice showed reduced Erk phosphorylation, expression of cyclin D1, and a corresponding decrease in proliferative capability compared with the littermate controls. In addition, phosphorylation of STAT5 and expression of whey acidic protein are significantly reduced in the mammary glands of MFCKO mice, suggesting defective secretory maturation in these mice. Therefore, the combination of the severe lobulo-alveolar hypoplasia and defective secretory differentiation is responsible for the inability of the MFCKO females to nurse their pups. Together, these results provide strong support for a role of FAK in the mammary gland development and function in vivo.

Cited by (0)

*

This research was supported in part by National Institutes of Health Grant GM48050 (to J.-L. G.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

Supported in part by United States Department of Defense Predoctoral Traineeship Award W81XWH-04-1-0400).