Enzyme Catalysis and Regulation
Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status: INSIGHTS FROM CELLS WITH TET-REGULATED GTP CYCLOHYDROLASE I EXPRESSION*

https://doi.org/10.1074/jbc.M805403200Get rights and content
Under a Creative Commons license
open access

Tetrahydrobiopterin (BH4) is a critical determinant of endothelial nitric-oxide synthase (eNOS) activity. In the absence of BH4, eNOS becomes “uncoupled” and generates superoxide rather than NO. However, the stoichiometry of intracellular BH4/eNOS interactions is not well defined, and it is unclear whether intracellular BH4 deficiency alone is sufficient to induce eNOS uncoupling. To address these questions, we developed novel cell lines with tet-regulated expression of human GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in BH4 synthesis, to selectively induce intracellular BH4 deficiency by incubation with doxycycline. These cells were stably co-transfected to express a human eNOS-green fluorescent protein fusion protein, selecting clones expressing either low (GCH/eNOS-LOW) or high (GCH/eNOS-HIGH) levels. Doxycycline abolished GTPCH mRNA expression and GTPCH protein, leading to markedly diminished total biopterin levels and a decreased ratio of BH4 to oxidized biopterins in cells expressing eNOS. Intracellular BH4 deficiency induced superoxide generation from eNOS, as assessed by N-nitro-L-arginine methyl ester inhibitable 2-hydroxyethidium generation, and attenuated NO production. Quantitative analysis of cellular BH4 versus superoxide production between GCH/eNOS-LOW and GCH/eNOS-HIGH cells revealed a striking linear relationship between eNOS protein and cellular BH4 stoichiometry, with eNOS uncoupling at eNOS:BH4 molar ratio >1. Furthermore, increasing the intracellular BH2 concentration in the presence of a constant eNOS:BH4 ratio was sufficient to induce eNOS-dependent superoxide production. This specific, reductionist approach in a cell-based system reveals that eNOS:BH4 reaction stoichiometry together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling, even in the absence of exogenous oxidative stress.

Cited by (0)

*

This work was supported by British Heart Foundation Project Grant PG/05/141/20098, British Heart Foundation Programme Grant RG/02/006, and Wellcome Trust Clinician Scientist Fellowship GR074428/Z/04/Z. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1 and S2.