Journal of Biological Chemistry
Volume 283, Issue 49, 5 December 2008, Pages 33927-33934
Journal home page for Journal of Biological Chemistry

Metabolism and Bioenergetics
Tissue Processing of Nitrite in Hypoxia: AN INTRICATE INTERPLAY OF NITRIC OXIDE-GENERATING AND -SCAVENGING SYSTEMS*

https://doi.org/10.1074/jbc.M806654200Get rights and content
Under a Creative Commons license
open access

Although nitrite ( NO2-) and nitrate ( NO3-) have been considered traditionally inert byproducts of nitric oxide (NO) metabolism, recent studies indicate that NO2- represents an important source of NO for processes ranging from angiogenesis through hypoxic vasodilation to ischemic organ protection. Despite intense investigation, the mechanisms through which NO2- exerts its physiological/pharmacological effects remain incompletely understood. We sought to systematically investigate the fate of NO2- in hypoxia from cellular uptake in vitro to tissue utilization in vivo using the Wistar rat as a mammalian model. We find that most tissues (except erythrocytes) produce free NO at rates that are maximal under hypoxia and that correlate robustly with each tissue's capacity for mitochondrial oxygen consumption. By comparing the kinetics of NO release before and after ferricyanide addition in tissue homogenates to mathematical models of NO2- reduction/NO scavenging, we show that the amount of nitrosylated products formed greatly exceeds what can be accounted for by NO trapping. This difference suggests that such products are formed directly from NO2-, without passing through the intermediacy of free NO. Inhibitor and subcellular fractionation studies indicate that NO2- reductase activity involves multiple redundant enzymatic systems (i.e. heme, iron-sulfur cluster, and molybdenum-based reductases) distributed throughout different cellular compartments and acting in concert to elicit NO signaling. These observations hint at conserved roles for the NO2--NO pool in cellular processes such as oxygen-sensing and oxygen-dependent modulation of intermediary metabolism.

Cited by (0)

*

This work was supported, in whole or in part, by National Institutes of Health Grants HL 69029 (to M. F.) and the Kirschstein National Research Service Award Cardiovascular Training Grant (to B. O. F. and N. S. B.). This work was also supported by the Medical Research Council (MRC Strategic Appointment Scheme, to M. F.), and a Wellcome Trust CVRI Fellowship (to H. A.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental information, Table S1, and Figs. S1 and S2.

2

Both authors contributed equally to this work.