Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T02:10:07.585Z Has data issue: false hasContentIssue false

Dietary fat influences Ia antigen expression, cytokines and prostaglandin E2 production of immune cells in autoimmune-prone NZB x NZW F1 mice

Published online by Cambridge University Press:  09 March 2007

Bi-Fong lin
Affiliation:
Laboratory of Nutritional Chemistry, Department of Agricultural Chemistry, College of Agriculture
Chao-Chi Huang
Affiliation:
Laboratory of Nutritional Chemistry, Department of Agricultural Chemistry, College of Agriculture
Bor-Luen Chiang
Affiliation:
Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan 10764, Republic of China
Su-Jen Jeng
Affiliation:
Laboratory of Nutritional Chemistry, Department of Agricultural Chemistry, College of Agriculture
Rights & Permissions [Opens in a new window]

Abstracts

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To elucidate further the influences of dietary fat on autoimmune diseases, two groups of NZB/W F1 mice were fed with diets containing 200 g dietary fat/kg and 50 g dietary fat/kg (control) respectively. The difference in energy intake between these two groups was compensated with carbohydrate. Mice were bled regularly every month and some of them were killed for in vitro experiments after 5 months experimental diets. Higher immunoglobulin (Ig)M and IgG anti-double stranded DNA antibody levels, shortened life span and worsened proteinuria were noted in mice fed on the high-fat diet compared with those fed on 50g dietary fat/kg. Phenotypic analyses of spleen cells and peritoneal exudate cells showed that the percentage of CD5+ B cells and the mean fluorescent intensity of major histocompatibility molecules on the surface of both types of cells were higher in mice fed on the high-fat diet. In general, higher type 2 T-helper cell activity was noted in mice fed on the high-fat diet. In addition, cytokines such as interleukin-6, tumour necrosis factor-α and prostaglandin E2 (PGE2) produced by lipopolysaccharide-stimulated peritoneal exudate cells were also higher in the high-dietary-fat group. These studies suggest that high dietary fat and its related PGE2 level might have a critical effect on the frequency of CD5+ B cells, cytokine production, macrophage function and subsequent autoimmune regulation in autoimmune mice.

Type
Fat nutrition and autoimmunity
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Alarcon-Riquelme, M. E., Moller, G. & Fernandez, C. (1993). Macrophage depletion decreases IgG anti-DNA in cultures from (NZB x NZW) F1 spleen cells by eliminating the main source of IL-6. Clinical Experimental Immunology 91, 220225.CrossRefGoogle ScholarPubMed
Alexander, N. J., Smythe, N. L. & Jokinen, M. P. (1987). The type of dietary fat affects the severity of autoimmune disease in NZB/NZW mice. American Journal of Pathology 127, 106121.Google ScholarPubMed
American Institute of Nutrition (1977). Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Beach, R. S., Gershwin, M. E. &Hurley, L. S. (1981). Nutritional factors and autoimmunity. I. Immunopathology of Zinc deprivation in New Zealand mice. Journal of Immunology 126, 19992006.CrossRefGoogle ScholarPubMed
Berger, A.German, J. B., Chiang, B. -L., Ansari, A. A., Keen, C. L., Fletcher, M. P. & Gershwin, M. E. (1993). Influence of feeding unsaturated fats on growth and immune status of mice. Journal of Nutrition 123, 225233.Google ScholarPubMed
Betz, M. & Fox, B. S. (1991). Prostaglandin E2 inhibits production of Thl lymphokines but not of Th2 lymphokines. Journal of Immunology 146, 108113.CrossRefGoogle Scholar
Cawley, D., Chiang, B. -L., Ansari, A. & Gershwin, M. E. (1991). Ionic binding characteristics of monoclonal autoantibodies to DNA from NZB.H-2bm12 mice. Autoimmunity 9, 301309.CrossRefGoogle ScholarPubMed
Cawley, D., Chiang, B. -L., Naiki, M., Ansari, A. A. & Gershwin, M. E. (1993). Comparison of the requirements for cognate T cell help for IgG anti-dsDNA antibody production in vitro: T helper-derived lymphokines replace T cell help for B cells from NZB.H-2bm12 but not from B6.H-2bm12 mice. Journal of Immunology 150, 24672477.CrossRefGoogle Scholar
Dauphinee, M. J., Kipper, S. B., Wofsey, D. & Talal, N. (1981). Interleukin-2 deficiency is a common feature of autoimmune mice. Journal of Immunology 127, 24832487.CrossRefGoogle ScholarPubMed
Farinas, M. C., Stall, A. M., Solovera, J. J., Tarlinton, D. M., Herzenberg, L. A. & Strober, S. (1990). Ly-1 B cells and disease activity in (NZB x NZW) F1 mice. Arthritis Rheumatism 33, 553562.CrossRefGoogle Scholar
Fernandes, G. & Good, R. A. (1984). Inhibition by restricted-calorie diet of lymphoproliferative disease and renal damage in MRL/lpr mice. Proceedings of the National Academy of Sciences USA 81, 61446148.CrossRefGoogle ScholarPubMed
Fernandes, G., Yunis, E. J. & Good, R. A. (1976). Influence of protein restriction on immune functions in NZB mice. Journal of Immunology 116, 782790.CrossRefGoogle ScholarPubMed
Gold, K. N., Weyand, C. M. & Goronzy, J. J. (1994). Modulation of helper T cell function by prostaglandins. Arthritis Rheumatism 37, 925933.CrossRefGoogle ScholarPubMed
Huang, S. -C., Misfeldt, M. L. & Fritsche, K. L. (1992). Dietary fat influences Ia antigen expression and immune cell populations in the murine peritoneum and spleen. Journal of Nutrition 122, 12191231.CrossRefGoogle ScholarPubMed
Hubbard, N. E., Somers, S. D. & Erickson, K. L. (1991). Effect of dietary fish oil on development and selected functions of murine inflammatory macrophages. Journal of Leukocyte Biology 49, 592598.CrossRefGoogle ScholarPubMed
Ishida, H., Hastings, R., Kearney, J. & Howard, M. (1992). Continuous anti-IL-10 antibody administration depletes mice of Ly-1 B cells but not conventional B cells. Journal of Experimental Medicine 175, 671682.CrossRefGoogle Scholar
Jacob, C. O. & McDevitt, H. O. (1988). Tumor necrosis factor-α in murine autoimmue 'lupus' nephritis. Nature 331, 356358.CrossRefGoogle Scholar
Janeway, C. A. Jr, Bottomly, K., Babich, J., Conrad, P., Conzen, S., Jones, B., Kaye, J., Katz, M., McVay, L., Murphy, D. B. & Tite, J. (1984). Quantitative variation in Ia antigen expression plays a central role in immune regulation. Immunology Today 5, 99104.CrossRefGoogle Scholar
Kubo, C., Johnson, B. C., Day, N. K. & Good, R. (1984). Calorie source, calorie restriction, immunity and aging of (NZB/W) F1 mice. Journal of Nutrition 114, 18841899.CrossRefGoogle Scholar
Maki, P. A. & Newberne, P. M. (1992). Dietary lipid and immune function. Journal of Nutrition 122, 610614.CrossRefGoogle ScholarPubMed
Matis, L. A., Glimcher, L. H., Paul, W. E. & Schwartz, R. H. (1983). Magnitude of response of histocompatibility-restricted T cell clones is a function of the product of concentrations of antigen and Ia molecules. Proceedings of the National Academy of Sciences USA 80, 60196023.CrossRefGoogle ScholarPubMed
Morrow, W. J. W., Ohashi, Y., Hall, J., Pribnow, J., Hirose, S., Shirai, T. & Levy, J. A. (1985). Dietary fat and immune function in (NZB x NZW) F1 mice. Journal oflmmunology 135, 38573863.Google ScholarPubMed
Ogura, M., Ogura, H., Ikehara, S. & Good, R. A. (1989). Influence of dietary energy restriction on the numbers and proportions of Ly-1 + B lymphocytes in autoimmunity-prone mice. Proceedings of the National Academy of Sciences USA 86, 42254229.CrossRefGoogle ScholarPubMed
Robinson, D. R., Prickett, J. D., Makoul, G. T., Steinberg, A. D. & Colvin, R. B. (1986). Dietary fish oil reduces progression of established renal disease in (NZB x NZW) F1 mice and delays renal disease in BXSB and MRL/1 strains. Arthritis Rheumatism 29, 539546.CrossRefGoogle ScholarPubMed
Santoli, D. & Zurier, R.B. (1989). Prostaglandin E precursor fatty acid inhibit human IL-2 production by a prostaglandin Eindependent mechanism. Journal of Immunology 143, 13031309.CrossRefGoogle ScholarPubMed
Secrist, H., Dekruyff, R. H. & Umetsu, D. T. (1995). Interleukin-4 production by CD4+ T cells from allergic individuals is modulated by antigen concentration and antigen-presenting cell type. Journal cf Experimental Medicine 181 10811089.CrossRefGoogle ScholarPubMed
Snyder, D. S., Beller, D. I. & Unanue, E. R. (1982). Prostaglandins modulate macrophage Ia expression. Nature 299, 163165.CrossRefGoogle ScholarPubMed
Steinberg, A. D., Klinman, D. M., Kastner, D. L., Seldin, M. F., Gause, W. C., Scribner, C. L., Britted, J. L., Siegel, J. N. & Mountz, J. D. (1987). Genetic and molecular genetic studies of murine and human lupus. Journal of Rheumatology 14, 166176.Google ScholarPubMed
Takeda, K., & Dennert, G. (1993). The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion and autoimmune symptoms. Journal of Experimental Medicine 177, 155164.CrossRefGoogle Scholar
Theofilopoulos, A. N. & Dixon, F.J. (1981). Etiopathogeneis of murine SLE. Immunology Review 55, 179216.CrossRefGoogle Scholar
Umland, S. P., Go, N. F., Cupp, J. E. & Howard, M. (1989). Responses of B cells from autoimmune mice to IL-5. Journal of Immunology 142, 15281535.CrossRefGoogle ScholarPubMed
Velupillai, P. & Harn, D. A. (1994). Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proceedings of the National Academy of Sciences USA 91, 1822.CrossRefGoogle ScholarPubMed
Watanabe, S., Onozaki, K., Yamamoto, S. & Okuyama, H. (1993). Regulation of dietary essential fatty acid balance of tumor necrosis factor production in mouse macrophages. Journal of Leukocyte Biology 53, 151156.CrossRefGoogle ScholarPubMed
Yoshida, S., Castles, J. J. & Gershwin, M. E. (1990). The pathogenesis of autoimmunity in New Zealand mice. Seminars in Arthritis Rheumatism 19, 224242.CrossRefGoogle ScholarPubMed