Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T15:20:23.817Z Has data issue: false hasContentIssue false

Effects of microbial synergism on fibre digestion in the rumen

Published online by Cambridge University Press:  28 February 2007

Burk A. Dehority
Affiliation:
Department of Animal Science, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691-4096, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Fibre digestion in farm livestock’
Copyright
The Nutrition Society

References

Akin, D. E. (1986). Chemical and biological structure in plants as related to microbial degradation of forage cell walls. In Control of Digestion and Metabolis. In Ruminants, pp. 139157 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs: Prentice-Hall.Google Scholar
Akin, D. E., Lyon, C. E., Windham, W. R. & Rigsby, L. L. (1989). Physical degradation of lignified stem tissues by ruminal fungi. Applied and Environmental Microbiology 55, 611616.CrossRefGoogle ScholarPubMed
Akin, D. E. & Rigsby, L. L. (1985). Degradation of bermuda and orchard grass by species of ruminal bacteria. Applied and Environment Microbiology 50, 825830.CrossRefGoogle ScholarPubMed
Bauchop, T. (1981). The anaerobic fungi in rumen fibre digestion. Agriculture and Environment 6, 339348.CrossRefGoogle Scholar
Bauchop, T. & Mountfort, D. O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Applied and Environmental Microbiology 42, 11031110.CrossRefGoogle ScholarPubMed
Bernalier, A., Fonty, G. & Gouet, Ph. (1988). Dégradation et fermentation de la cellulose par Neocallimastix sp. seul ou associé à quelques espèces bactériennes du rumen. (Degradation and fermentation of cellulose by Neocallimastix sp. alone or in association with several species of rumen bacteria.) Reproduction Nutrition Developpement 28, 7576.Google Scholar
Bryant, M. P. & Wolin, M. J. (1975). Rumen bacteria and their metabolic interactions. In Proceedings of First Intersectional Congress of IAMS, vol. 2, Developmental Microbial Ecology, pp. 297306 [Hasegawa, T., editor]. Tokyo: Science Council of Japan.Google Scholar
Chesson, A. & Forsberg, C. W. (1988). Polysaccharide degradation by rumen microorganisms. In The Rumen Microbial Ecosystem, pp. 251284 [Hobson, P. N., editor]. London: Elsevier Science Publishers Ltd.Google Scholar
Chesson, A., Stewart, C. S., Dalgarno, K. & King, T. P. (1986). Degradation of isolated grass mesophyll, epidermis and fibre cell walls in the rumen and by cellulolytic rumen bacteria in axenic culture. Journal of Applied Bacteriology 60, 327336.CrossRefGoogle Scholar
Coen, J. A. & Dehority, B. A. (1970). Degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria. Applied Microbiology 20, 362368.CrossRefGoogle ScholarPubMed
Coleman, G. S. (1978). The metabolism of cellulose, glucose and starch by the rumen ciliate protozoon Eudiplodinium maggii. Journal of General Microbiology 107, 359366.CrossRefGoogle Scholar
Coleman, G. S. (1985). The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. Journal of Agricultural Science, Cambridge 104, 349360.CrossRefGoogle Scholar
Coleman, G. S. (1986). The distribution of carboxymethyl cellulose between fractions taken from the rumen of sheep containing no protozoa or one of five different protozoal populations. Journal of Agricultural Science 106, 121127.CrossRefGoogle Scholar
Coleman, G. S., Laurie, J. I., Bailey, J. E. & Holdgate, S. A. (1976). The cultivation of cellulolytic protozoa isolated from the rumen. Journal of General Microbiology 95, 144150.CrossRefGoogle ScholarPubMed
Coleman, G. S., Sandford, D. C. & Beahon, S. (1980). The degradation of polygalacturonic acid by rumen ciliate protozoa. Journal of General Microbiology 120, 295300.Google ScholarPubMed
Dehority, B. A. (1965). Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. Journal of Bacteriology 89, 15151520.CrossRefGoogle ScholarPubMed
Dehority, B. A. (1967). Rate of isolated hemicellulose degradation and utilization by pure cultures of rumen bacteria. Applied Microbiology 15, 987993.CrossRefGoogle ScholarPubMed
Dehority, B. A. (1969). Pectin-fermenting bacteria isolated from the bovine rumen. Journal of Bacteriology 99, 189196.CrossRefGoogle ScholarPubMed
Dehority, B. A. (1973). Hemicellulose degradation by rumen bacteria. Federation Proceedings 32, 18191825.Google ScholarPubMed
Dehority, B. A. (1986). Protozoa of the digestive tract of herbivorous mammals. Insect Science and its Application 7, 279296.Google Scholar
Dehority, B. A. & Johnson, R. R. (1961). Effect of particle size upon the in vitro cellulose digestibility of forages by rumen bacteria. Journal of Dairy Science 44, 22422249.CrossRefGoogle Scholar
Dehority, B. A., Johnson, R. R. (1961). Effect of particle size upon the in vitro cellulose and pectin by rumen bacteria in vitro and the effect of lignification thereon. Journal of Dairy Science 45, 508512.CrossRefGoogle Scholar
Dehority, B. A. & Scott, H. W. (1967). Extent of lignification thereon. Journal of Dairy Science 50, 11361141.CrossRefGoogle Scholar
Dehority, B. A., Scott, H. W. & Johnson, R. R. (1968). Estimation of forage nutritive value from cellulose digestibilities obtained with pure cultures of cellulolytic rumen bacteria. Journal of Dairy Science 51, 567572.CrossRefGoogle Scholar
Fonty, G., Gouet, Ph. & Sante, V. (1988). Influence d'une bactérie méthanogène sur I'activité cellulolytique et le métabolisme de deux espèces de champignons cellulolytiques du rumen in vitro. (Influence of a methanogenic bacterium on the cellulolytic activity and the metabolism of two species of rumen cellulolytic fungi in vitro.) Résultats préliminaires. Reproduction Nutrition Developement 28, 133134.CrossRefGoogle Scholar
Gordon, G. L. R. & Phillips, M. W. (1989). Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen. Applied and Environmental Microbiology 55, 17031710.CrossRefGoogle ScholarPubMed
Gradel, C. M. & Dehority, B. A. (1972). Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. Applied Microbiology 23, 332340.CrossRefGoogle ScholarPubMed
Graham, H. P., Aman, P., Theander, O., Kolankaya, N. & Stewart, C. S. (1985). Influence of heat sterilization and ammoniation on straw composition and degradation by pure cultures of cellulolytic rumen bacteria. Animal Feed Science and Technology 12, 195203.CrossRefGoogle Scholar
Hebraud, M. & Fever, M. (1988). Characterization of glycoside and polysaccharide hydrolases secreted by the rumen anaerobic fungi Neocallimastix frontails, Sphaeromonas communis and Piromonas communis. Journal of General Microbiology 134, 11231129.Google Scholar
Ho, Y. W., Abdullah, N. & Jalaludin, S. (1988). Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. Journal of General Microbiology 134, 177181.Google Scholar
Hungate, R. E. (1972). Relationships between protozoa and bacteria of the alimentary tract. American Journal of Clinical Nutrition 25, 14801484.CrossRefGoogle ScholarPubMed
Joblin, K. N., Campbell, G. P., Richardson, A. J. & Stewart, C. S. (1989). Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens. Letters in Applied Microbiology 9, 195197.CrossRefGoogle Scholar
Kamstra, L. D., Moxon, A. L. & Bentley, O. G. (1958). The effect of stage of maturity and lignification on the digestion of cellulose in forage plants by rumen microorganisms in vitro. Journal of Animal Science 17, 199208.CrossRefGoogle Scholar
Kock, S. G. & Kistner, A. (1969). Extent of solubilization of α-cellulose and hemicellulose of low-protein teff hay by pure cultures of cellulolytic rumen bacteria. Journal of General Microbiology 55, 459462.CrossRefGoogle ScholarPubMed
Kolankaya, N., Stewart, C. S., Duncan, S. H., Cheng, K.-J. & Costerton, J. W. (1985). The effect of ammonia treatment on the solubilization of straw and the growth of cellulolytic rumen bacteria. Journal of Applied Bacteriology 58, 371379.CrossRefGoogle ScholarPubMed
Lagowski, J. M., Sell, H. M., Huffman, C. F. & Duncan, C. W. (1958). The carbohydrates in alfalfa Medicago sativa. I. General composition, identification of a nonreducing sugar and investigation of the pectic substances. Archives of Biochemistry and Biophysics 76, 306316.CrossRefGoogle ScholarPubMed
Miura, H., Horiguchi, M. & Matsumoto, T. (1980). Nutritional interdependence among rumen bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus albus. Applied and Environmental Microbiology 40, 294300.CrossRefGoogle ScholarPubMed
Morris, E. J. & van Gylswyk, N. O. (1980). Comparison of the action of rumen bacteria on cell walls from Eragrostis tef. Journal of Agricultural Science 95, 313323.CrossRefGoogle Scholar
Orpin, C. G. (19831984). The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Animal Feed Science and Technology 10, 121143.CrossRefGoogle Scholar
Orpin, C. G. (1988). Nutrition and biochemistry of anaerobic Chytridiomycetes. BioSystems 21, 365370.CrossRefGoogle ScholarPubMed
Orpin, C. G. & Hart, Y. (1980). Digestion of plant particles by rumen phycomycete fungi. Journal of Applied Bacteriology 49, x.Google Scholar
Orpin, C. G. & Joblin, K. N. (1988). The rumen anaerobic fungi. In The Rumen Microbial Ecosystem, pp. 129150 [Hobson, P. N., editor]. London: Elsevier Science Publishers Ltd.Google Scholar
Orpin, C. G. & Letcher, A. J. (1979). Utilization of cellulose, starch, xylan, and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis. Current Microbiology 3, 121124.CrossRefGoogle Scholar
Osborne, J. M. & Dehority, B. A. (1989). Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria. Applied and Environmental Microbiology 55, 22472250.CrossRefGoogle ScholarPubMed
Phillips, M. W. & Gordon, G. L. R. (1988). Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New-Zealand. BioSystems 21, 377383.CrossRefGoogle ScholarPubMed
Richardson, A. J., Stewart, C. S., Campbell, G. P., Wilson, A. B. & Joblin, K. N. (1986). Influence of co-culture with rumen bacteria on the lignocellulolytic activity of phycomycetous fungi from the rumen. Abstracts of XIV International Congress of Microbiology PG2–24, 233.Google Scholar
Romulo, B. H., Bird, S. H. & Leng, R. A. (1986). The effects of defaunation on digestibility and rumen fungi counts in sheep fed high-fibre diets. Proceedings of Australian Society of Animal Production 16, 327330.Google Scholar
Russell, J. B. (1985). Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Applied and Environmental Microbiology 49, 572576.CrossRefGoogle ScholarPubMed
Russell, J. B. & Wallace, R. J. (1988). Energy yielding and consuming reactions. In The Rumen Microbial Ecosystem, pp. 185216 [Hobson, P. N., editor]. London: Elsevier Science Publications Ltd.Google Scholar
Scheifinger, C. C. & Wolin, M. J. (1973). Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Applied Microbiology 25, 789795.CrossRefGoogle Scholar
Soetanto, H., Gordon, G. L. R., Hume, I. D. & Leng, R. A. (1985). The role of protozoa and fungi in fibre digestion in the rumen of sheep. 3rd AAAP Animal Science Congress 2, 805807.Google Scholar
Stewart, C. S., Dinsdale, D., Cheng, K.-J. & Paniagua, C. (1979). In Straw Decay and its Effect on Disposal and Utilization, pp. 123130 [Grossbard, E., editor]. Chichester: J. Wiley.Google Scholar
Stumm, C. K., Gijzen, H. J. & Vogels, G. D. (1982). Association of methanogenic bacteria with ovine rumen ciliates. British Journal of Nutrition 47, 9599.CrossRefGoogle ScholarPubMed
Theodorou, M. K., Longland, A. C., Dhanoa, M. S., Lowe, S. E. & Trinci, A. P. J. (1989). Growth of Neocallimastix sp. strain R1 on Italian ryegrass hay: removal of neutral sugars from plant cell walls. Applied and Environmental Microbiology 55, 13631367.CrossRefGoogle ScholarPubMed
Van Soest, P. J. (1982). Nutritional Ecology of the Ruminant. Corvallis: O & B Books.Google Scholar
Varel, V. H., Richardson, A. J. & Stewart, C. S. (1989). Degradation of barley straw, ryegrass, and alfalfa cell walls by Clostridium longisporum and Ruminococcus albus. Applied and Environmental Microbiology 55, 30803084.CrossRefGoogle ScholarPubMed
Veira, D. M. (1986). The role of ciliate protozoa in nutrition of the ruminant. Journal of Animal Science 63, 15471560.CrossRefGoogle ScholarPubMed
Waite, R. & Garrod, A. R. N. (1959). The comprehensive analysis of grasses. Journal of Science of Food and Agriculture 10, 317326.CrossRefGoogle Scholar
Wallace, R. J. (1985). Synergism between different species of proteolytic rumen bacteria. Current Microbiology 12, 5964.CrossRefGoogle Scholar
Williams, A. G. (1986). Rumen holotrich ciliate protozoa. Microbiological Reviews 50, 2549.CrossRefGoogle ScholarPubMed
Williams, A. G. & Coleman, G. S. (1985). Hemicellulose-degrading enzymes in rumen ciliate protozoa. Current Microbiology 12, 8590.CrossRefGoogle Scholar
Williams, A. G. & Coleman, G. S. (1988). The rumen protozoa. In The Rumen Microbial Ecosystem, pp. 77128 [Hobson, P. N., editor]. London: Elsevier Science Publishers Ltd.Google Scholar
Williams, A. G. & Orpin, C. G. (1987). Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Canadian Journal of Microbiology 33, 418426.CrossRefGoogle ScholarPubMed
Wolin, M. J. & Miller, T. L. (1988). Microbe-microbe interactions. In The Rumen Microbial Ecosystem, pp. 343359 [Hobson, P. N., editor]. London: Elsevier Science Publishers Ltd.Google Scholar