Skip to main content

Advertisement

Log in

Glial cell response: A pathogenic factor in Parkinson’s disease

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Alternatively, this glial response can also mediate a variety of deleterious events related to the production of pro-oxidant reactive species, proinflammatory prostaglandin, and cytokines. In this review, the authors discuss the potential protective and deleterious effects of glial cells in the SNpc of PD and examine how these factors may contribute to the pathogenesis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, Ischiropoulos H (1998). Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci USA 95: 7659–7663.

    Article  CAS  PubMed  Google Scholar 

  • Banati RB, Daniel SE, Blunt SB (1998). Glial pathology but absence of apoptotic nigral neurons in longstanding Parkinson’s disease. Mov Disord 13: 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993). Cytotoxicity of microglia. Glia 7: 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor PE, Liberatore GT, Porritt MJ, Donnan GA, Howells DW (2000). Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur J Neurosci 12: 3462–3468.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19: 1708–1716.

    CAS  PubMed  Google Scholar 

  • Beal MF (2001). Experimental models of Parkinson’s disease. Nat Rev Neurosci 2: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Piallat B, Ni ZG, Koudsie A, Pollak P, Benabid AL (2000). Implication of the subthalamic nucleus in the pathophysiology and pathogenesis of Parkinson’s disease. Cell Transplant 9:: 215–221.

    CAS  PubMed  Google Scholar 

  • Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M (1999). IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson’s disease. Biomed Pharmacother 53: 141–145.

    Article  CAS  PubMed  Google Scholar 

  • Brown H, Kozlowski R, Perry H (1998). The importance of ion channels for marcophage and microglial activation in vitro. Glia 22: 94–97.

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Antonelli M, Sulzer D (1998). Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 71: 517–525.

    Article  CAS  PubMed  Google Scholar 

  • Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Czlonkowski A (1996). Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5: 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993). Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000). Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74: 2213–2216.

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A, Bahr M, Weller M, Dichgans J, Schulz JB (2000). Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 20: 9126–9134.

    CAS  PubMed  Google Scholar 

  • Eddleston M, Mucke L (1993). Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54: 15–36.

    Article  CAS  PubMed  Google Scholar 

  • Fahn S (1989). Adverse effects of levodopa in Parkinson’s disease. In: Handbook of experimental pharmacology, vol 8, Calne DB (ed). Springer-Verlag: Berlin, pp 386–409.

    Google Scholar 

  • Fahn S, Przedborski S (2000). Parkinsonism. In: Merritt’s neurology. Rowland LP (ed). Lippincott Williams & Wilkins: New York, pp 679–693.

    Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW (1992). Astrocytes and Parkinson’s disease. Prog Brain Res 94: 429–436.

    Article  CAS  PubMed  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Gash DM, Zhang ZM, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996). Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255.

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann J, Banati RB, Kreutzberg GW (1993). Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 48: 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995). Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20: 269–287.

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290: 985–989.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000). Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97: 2875–2880.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989). Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chemic Neuropathol 10: 171–183.

    Article  CAS  Google Scholar 

  • Herrera AJ, Castano A, Venero JL, Cano J, Machado A (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7: 429–447.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Brugg B, Faucheux BA, Michel PP, Ruberg M, Muriel MP, Mouatt-Prigent A, Agid Y (1999). Glial cell participation in the degeneration of dopaminergic neurons in Parkinson’s disease. Adv Neurol 80: 9–18.

    CAS  PubMed  Google Scholar 

  • Hornykiewicz O, Kish SJ (1987). Biochemical pathophysiology of Parkinson’s disease. In: Parkinson’s disease. Yahr M, Bergmann KJ (eds). Raven Press: New York, pp 19–34.

    Google Scholar 

  • Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997). Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94: 7531–7536.

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC (1999). FceRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19: 3440–3447.

    CAS  PubMed  Google Scholar 

  • Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996). COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 93: 2317–2321.

    Article  CAS  PubMed  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20: 6309–6316.

    CAS  PubMed  Google Scholar 

  • Knott C, Stern G, Wilkin GP (2000). Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16: 724–739.

    Article  CAS  PubMed  Google Scholar 

  • Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998). Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39: 167–180.

    Article  CAS  PubMed  Google Scholar 

  • Kopin IJ, Markey SP (1988). MPTP toxicity: implication for research in Parkinson’s disease. Annu Rev Neurosci 11: 81–96.

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000). Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290: 767–773.

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, Cochran EJ, Mufson EJ, Penn R, Goetz CG, Comella CD (1999). Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46: 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Irwin I (1983). Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980.

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46: 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Irwin I (1986). MPTP: current concepts and controversies. Clin Neuropharmacol 9: 485–507.

    Article  CAS  PubMed  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39: 151–170.

    Article  CAS  PubMed  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5: 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Jiang JW, Wilson BC, Du L, Yang SN, Wang JY, Wu GC, Cao XD, Hong JS (2000). Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther 295: 125–132.

    CAS  PubMed  Google Scholar 

  • Mattammal MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH (1995). Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease. J Neurochem 64: 1645–1654.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285–1291.

    CAS  PubMed  Google Scholar 

  • Mirza B, Hadberg H, Thomsen P, Moos T (2000). The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95: 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996). Interleukin (IL)-1beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211: 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165: 208–210.

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000). Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107: 335–341.

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Quinn B, DeLanney LE, Irwin I, Langston JW, Graybiel AM (1992). Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 89: 3859–3863.

    Article  CAS  PubMed  Google Scholar 

  • Muthane U, Ramsay KA, Jiang H, Jackson-Lewis V, Donaldson D, Fernando S, Ferreira M, Przedborski S (1994). Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1 mice. Exp Neurol 126: 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Xie QW (1994). Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728.

    CAS  PubMed  Google Scholar 

  • O’Banion MK (1999). Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13: 45–82.

    PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB, Reinhard JF (1990). Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res 521: 73–80.

    Article  PubMed  Google Scholar 

  • Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW (1999). Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine and O,O′-dityrosine in brain tissue of MPTP-treated mice, a model of oxidative stress in Parkinson’s disease. J Biol Chem 274: 34621–34628.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Chen Q, Vila M, Giasson BI, Djaldatti R, Vukosavic S, Souza JM, Jackson-Lewis V, Lee VM, Ischiropoulos H (2001a). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem 76: 637–640.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V (2000). ROS and Parkinson’s disease: a view to a kill. In: Free radicals in brain pathophysiology. Poli G, Cadenas E, Packer L (eds). Marcel Dekker: New York, pp 273–290.

    Google Scholar 

  • Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000a). The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16: 135–142.

    CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Naini A, Jakowec M, Petzinger G, Miller R, Akram M (2001b). The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76: 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM (1996). Role of neuronal nitric oxide in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA 93: 4565–4571.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Vila M (2001). MPTP: A review of its mechanisms of neurotoxicity. Clinical Neuroscience Research 1: 407–418.

    Article  CAS  Google Scholar 

  • Przedborski S, Vila M, Jackson-Lewis V, Dawson TM (2000b). Reply: a new look at the pathogenesis of Parkinson’s disease. Trends Pharmacol Sci 21: 165.

    Article  CAS  PubMed  Google Scholar 

  • Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, Leahy K, Perkins W, Isakson P (1995). Mediation of inflammation by cyclooxygenase-2. Agents Actions Suppl 46: 41–50.

    CAS  PubMed  Google Scholar 

  • Seniuk NA, Tatton WG, Greenwood CE (1990). Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res 527: 7–20.

    Article  CAS  PubMed  Google Scholar 

  • Sheng JG, Shirabe S, Nishiyama N, Schwartz JP (1993). Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp Brain Res 95: 450–456.

    Article  CAS  PubMed  Google Scholar 

  • Snow BJ, Vingerhoets FJ, Langston JW, Tetrud JW, Sossi V, Calne DB (2000). Pattern of dopaminergic loss in the striatum of humans with MPTP induced parkinsonism. J Neurol Neurosurg Psychiatry 68: 313–316.

    Article  CAS  PubMed  Google Scholar 

  • Sortwell CE, Daley BF, Pitzer MR, McGuire SO, Sladek JR, Collier TJ (2000). Oligodendrocyte-type 2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition of apoptotic cell death. J Comp Neurol 426: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Ferger B (2001). Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Jackson-Lewis V, Vukosavic S, Djaldetti R, Liberatore G, Offen D, Korsmeyer SJ, Przedborski S (2001). Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 98: 2837–2842.

    Article  CAS  PubMed  Google Scholar 

  • Vingerhoets FJG, Snow BJ, Tetrud JW, Langston JW, Schulzer M, Calne DB (1994). Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann Neurol 36: 765–770.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000). NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol (Berl) 99: 14–20.

    Article  CAS  Google Scholar 

  • Wilkin GP, Knott C (1999). Glia: a curtain raiser. Adv Neurol 80: 3–7.

    CAS  PubMed  Google Scholar 

  • Xia Y, Zweier JL (1997). Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 94: 6954–6958.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Przedborski.

Additional information

This studyis supportedby the NIH/NINDS grants R29NS37345, RO1 NS38586 and NS42269, and P50 NS38370,theNIH/NIA RO1 grant AG13966, the US Department of Defense Grant (DAMD 17-99-1-9471), the Lowenstein Foundation, the Goldman Foundation, the Parkinson’s Disease Foundation, the Muscular Dystrophy Association, the ALS Association, and Project-ALS.

MV is the recipient of a fellowship of the Human Frontier Science Program Organization and PT is the recipient of a grant of the German Research Foundation TE 343/1-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D.C., Tieu, K., Cohen, O. et al. Glial cell response: A pathogenic factor in Parkinson’s disease. Journal of NeuroVirology 8, 551–558 (2002). https://doi.org/10.1080/13550280290100905

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280290100905

Keywords

Navigation