Skip to main content

Advertisement

Log in

Cerebrospinal fluid is an efficient route for establishing brain infection with feline immunodeficiency virus and transfering infectious virus to the periphery

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Like human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV) invades and infects the central nervous system (CNS) soon after peripheral infection. The appearance of viral RNA is particularly prominent in the cerebrospinal fluid (CSF), suggesting an efficient route of virus transfer across the blood-CSF barrier. This raises the concern whether this route can establish a stable viral reservoir and also be a source of virus capable of reseeding peripheral systems. To examine this possibility, 200 μl of cell-free NCSU1 FIV or FIV-infected choroid plexus macrophages (ChP-Mac) was directly injected into the right lateral ventricle of the brain. Negative controls were sham inoculated with uninfected ChP-Mac or virus-free culture supernatant and positive controls were infected systemically by intraperitoneal (i.p.) injection. Intracerebroventricular (i.c.v.) inoculation with cell-free FIV resulted in high levels of plasma FIV RNA detected as early as 1 to 2 weeks post inoculation in all cats. In each case, the plasma viremia preceded the detection of CSF viral RNA. Compared to i.p. cats, i.c.v. cats had 32-fold higher CSF viral loads, 8-fold higher ratios of CSF to plasma viral load, and a 23-fold greater content of FIV proviral DNA in the brain. No FIV RNA was detected in plasma or CSF from the cats inoculated with FIV-infected ChP-Mac but an acute inflammatory response and a slight suppression of the CD4+:CD8+ ratio were observed. These results indicate that free FIV circulating in the CSF promotes infection of the CNS and provides a highly efficient pathway for the transfer of infectious virus to the periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antinori A, Cingolani A, Giancola ML, Forbici F, De Luca A, Perno CF (2003). Clinical implications of HIV-1 drug resistance in the neurological compartment. Scand J Infect Dis Suppl 35(Suppl 106): 41–44.

    Article  CAS  Google Scholar 

  • Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE (2004). Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J NeuroVirol 10(Suppl 1): 15–20.

    CAS  PubMed  Google Scholar 

  • Blankson JN, Persaud D, Siliciano RF (2002). The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med 53: 557–593.

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Gray F, Chakrabarti L, Hurtrel M, Montagnier L, Hurtrel B (1995). Low susceptibility of resident microglia to simian immunodeficiency virus replication during the early stages of infection. Neuropathol Appl Neurobiol 21: 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Hurtrel M, Gray F, Claessens-Maire MA, Ganiere JP, Montagnier, Hurtrel B (1996). Virus load and neuropathology in the FIV model. J NeuroVirol 2: 377–387.

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Khatissian E, Gray F, Falanga P, Montagnier L, Hurtrel B (1999). Viral load and neuropathology in the SIV model. J NeuroVirol 5: 232–240.

    Article  CAS  PubMed  Google Scholar 

  • Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1997). Lymphatic drainage of the CNS: effects of lymphatic diversion/ligation on CSF protein transport to plasma. Am J Physiol 272: R1613-R1619.

    CAS  PubMed  Google Scholar 

  • Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998). Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274: R88-R96.

    CAS  PubMed  Google Scholar 

  • Boulton M, Young A, Hay J, Armstrong D, Flessner M, Schwartz M, Johnston M (1996). Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I-albumin clearance. Neuropathol Appl Neurobiol 22: 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Bragg D, Childers T, Tompkins M, Tompkins W, Meeker R (2002a). Infection of the choroid plexus by feline immunodeficiency virus. J NeuroVirol 8: 211–224.

    Article  CAS  PubMed  Google Scholar 

  • Bragg D, Hudson L, Liang Y, Tompkins M, Fernandes A, Meeker R (2002b). Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. J NeuroVirol 8: 225–239.

    Article  CAS  PubMed  Google Scholar 

  • Brew BJ, Pemberton L, Cunningham P, Law MG (1997). Levels of human immunodeficiency virus type 1 RNA in cerebrospinal fluid correlate with AIDS dementia stage. Infect Dis 175: 963–966.

    Article  CAS  Google Scholar 

  • Budka H (1991a). Neuropathology of human immunodeficiency virus infection. Brain Pathol 1: 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Budka H (1991b). The definition of HIV-specific neuropathology. Acta Pathol Jpn 41: 182–191.

    CAS  PubMed  Google Scholar 

  • Chen H, Wood C, Petito CK (2000). Comparisons of HIV-1 viral sequences in brain, choroid plexus and spleen: potential role of choroid plexus in the pathogenesis of HIV encephalitis. J NeuroVirol 6: 498–506.

    Article  CAS  PubMed  Google Scholar 

  • Cinque P, Vago L, Ceresa D, Mainini F, Terreni MR, Vagani A, Torri W, Bossolasco S, Lazzarin A (1998). Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. AIDS 12: 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC (2002). The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 186: 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Clements JE, Li Ming, Gama L, Bullock Brandon, Carruth LM, Mankowski JL, Zink MC (2005). The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: a model for human immunodeficiency virus patients on highly active antiretroviral therapy. J NeuroVirol 11(2): 180–189.

    CAS  PubMed  Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM (1992). Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Knopf PM (1997). Cervical lymphatics, the blood-brain barrier, and immunoreactivity of the brain. In Immunology of the Nervous System. Keane RW, Hickey WF (eds). Oxford University Press, pp 134–152.

    Google Scholar 

  • Cunningham PH, Smith DG, Satchell C, Cooper DA, Brew B (2000). Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 14: 1949–1954.

    Article  CAS  PubMed  Google Scholar 

  • Davidson MG, Rottman JB, English RV, Lappin MR, Tompkins MB (1993). Feline immunodeficiency virus predisposes cats to acute generalized toxoplasmosis. Am J Pathol 143: 1486–1497.

    CAS  PubMed  Google Scholar 

  • Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42: 1736–1739.

    CAS  PubMed  Google Scholar 

  • Di Stefano M, Monno L, Ramon FJ, Angarano G (1997). In vivo evidence of HIV-1 productive infection in cerebrospinal fluid of patients with HIV-1 encephalopathy. AIDS 11: 698–699.

    PubMed  Google Scholar 

  • Di Stefano M, Wilt S, Gray F, Dubois-Dalcq M, Chiodi F (1996). HIV type 1 V3 sequences and the development of dementia during AIDS. AIDS Res Hum Retroviruses 12: 471–476.

    Article  PubMed  Google Scholar 

  • Dow S, Poss M, Hoover E (1990). Feline immunodeficiency virus: a neurotropic lentivirus. J AIDS 3: 658–668.

    CAS  Google Scholar 

  • English RV, Johnson CM, Gebhard DH, Tompkins MB (1993). In vivo lymphocyte tropism of feline immunodeficiency virus. J Virol 67: 5175–5186.

    CAS  PubMed  Google Scholar 

  • Falangola MF, Hanly A, Galvao-Castro B, Petito CK (1995). HIV infection of human choroid plexus: a possible mechanism of viral entry into the CNS. J Neuropathol Exp Neurol 54: 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Adle-Biassette H, Chretien F, Lorin dlG, Force G, Keohane C (2001). Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol 20: 146–155.

    CAS  Google Scholar 

  • Gray F, Hurtrel M, Hurtrel B (1996). Early central nervous system changes in human immunodeficiency virus (HIV)-infection. Neuropathol Appl Neurobiol 19: 3–9.

    Article  Google Scholar 

  • Harling-Berg CJ, Hallett JJ, Park JT, Knopf PM (2002). Hierarchy of immune responses to antigen in the normal brain. Curr Top Microbiol Immunol 265: 1–22.

    CAS  PubMed  Google Scholar 

  • Harling-Berg CJ, Park TJ, Knopf PM (1999). Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J Neuroimmunol 101: 111–127.

    Article  CAS  PubMed  Google Scholar 

  • Hein A, Martin JP, Koehren F, Bingen A, Dorries R (2000). In vivo infection of ramified microglia from adult cat central nervous system by feline immunodeficiency virus. Virology 268: 420–429.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen SJ, Prospero-Garcia O, Phillips TR, Fox HS, Bloom FE, Elder JH (1995). Feline immunodeficiency virus as a model for study of lentivirus infection of the central nervous system. [review]. Curr Top Microbio Immunol 202: 167–186.

    CAS  Google Scholar 

  • Hurtrel B, Chakrabarti L, Hurtrel M, Maire MA, Dormont D, Montagnier L (1991). Early SIV encephalopathy. J Med Primatol 20: 159–166.

    CAS  PubMed  Google Scholar 

  • Hurtrel B, Chakrabarti L, Hurtrel M, Montagnier L (1993). Target cells during early SIV encephalopathy. Res Virol 144: 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Hurtrel M, Ganiere J, Guelifi J, Chakrabarti L, Maire M, Gray F, Montagnier L, Hurtrel B (1992). Comparison of early and late feline immunodeficiency virus encephalopathies. AIDS 6: 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Kida S, Pantazis A, Weller RO (1993). CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19: 480–488.

    Article  CAS  PubMed  Google Scholar 

  • Leutenegger CM, Klein D, Hofmann-Lehmann R, Mislin C, Hummel U, Boni J, Boretti F, Guenzburg WH, Lutz H (1999). Rapid feline immunodeficiency virus provirus quantitation by polymerase chain reaction using the TaqMan fluorogenic real-time detection system. J Virol Methods 78: 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neurovirol 6(Suppl 1): S70-S81.

    CAS  PubMed  Google Scholar 

  • Lossinsky AS, Shivers RR (2004). Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Histol Histopathol 19: 535–564.

    CAS  PubMed  Google Scholar 

  • Mann JD, Butler AB, Johnson RN, Bass NH (1979). Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. J Neurosurg 50: 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Albert J, Hansson P, Pehrsson P, Link H, Sonnerborg A (1998). Cerebrospinal fluid mononuclear cell counts influence CSF HIV-1 RNA levels. J Acquir Immune Defic Syndr Hum Retrovirol 17: 214–219.

    CAS  PubMed  Google Scholar 

  • Meeker RB, Thiede BA, Hall C, English R, Tompkins M (1997). Cortical cell loss in asymptomatic cats experimentally infected with feline immunodeficiency virus. AIDS Res Hum Retroviruses 13: 1131–1140.

    Article  CAS  PubMed  Google Scholar 

  • Petito CK (2004). Human immunodeficiency virus type 1 compartmentalization in the central nervous system. J NeuroVirol 10(Suppl 1): 21–24.

    CAS  PubMed  Google Scholar 

  • Petito CK, Chen H, Mastri AR, Torres-Munoz J, Roberts B, Wood C (1999). HIV infection of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroid plexus may be a reservoir of productive infection. J Neurovirol 5: 670–677.

    Article  CAS  PubMed  Google Scholar 

  • Phillips T, Prospero-Garcia O, Puaoi D, Lerner D, Fox H, Olmsted R, Bloom F, Heriksen S, Elder J (1994). Neurological abnormalities associated with feline immunodeficiency virus infection. J Gen Virol 75: 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Power C, Buist R, Johnston JB, Del Bigio MR, Ni W, Dawood MR, Peeling J (1998). Neurovirulence in feline immunodeficiency virus-infected neonatal cats is viral strain specific and dependent on systemic immune suppression. J Virol 72: 9109–9115.

    CAS  PubMed  Google Scholar 

  • Power C, Moench T, Peeling J, Kong P-A, Langelier T (1997). Feline immunodeficiency virus causes increased glutamate levels and neuronal loss in brain. Neuroscience 77: 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  • Redzic ZB, Segal MB (2004). The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56: 1695–1716.

    Article  CAS  PubMed  Google Scholar 

  • Ryan G, Grimes T, Brankin B, Mabruk MJ, Hosie MJ, Jarrett O, Callanan JJ (2005). Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers. J NeuroVirol 11: 337–345.

    Article  CAS  PubMed  Google Scholar 

  • Ryan G, Klein D, Knapp E, Hosie MJ, Grimes T, Mabruk MJ, Jarrett O, Callanan JJ (2003). Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection. J Virol 77: 7477–7485.

    Article  CAS  PubMed  Google Scholar 

  • Segal MB (2000). The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 20: 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Shapshak P, Segal DM, Crandall KA, Fujimura RK, Zhang BT, Xin KQ, Okuda K, Petito CK, Eisdorfer C, Goodkin K (1999). Independent evolution of HIV type 1 in different brain regions. AIDS Res Hum Retroviruses 15: 811–820.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair E, Gray F, Ciardi A, Scaravilli F (1994). Immunohistochemical changes and PCR detection of HIV provirus DNA in brains of asymptomatic HIV-positive patients. J Neuropathol Exp Neurol 53: 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Gunthard HF, Good B, Smith DM, Wolinsky SM, Furtado M, Marquie-Beck J, Durelle J, Grant I, Richman DD, Marcotte T, McCutchan JA, Ellis RJ, Wong JK (2005). Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol 79: 1772–1788.

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Hickey WF (2002). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25: 537–562.

    Article  CAS  PubMed  Google Scholar 

  • Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M, Jr., Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999). High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73: 10480–10488.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick B. Meeker.

Additional information

This study was supported by National Institutes of Health grant MH63646.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Hudson, L.C., Tompkins, M.B. et al. Cerebrospinal fluid is an efficient route for establishing brain infection with feline immunodeficiency virus and transfering infectious virus to the periphery. Journal of NeuroVirology 12, 294–306 (2006). https://doi.org/10.1080/13550280600889567

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280600889567

Keywords

Navigation