Skip to main content
Log in

Expression and distribution of voltage-gated sodium channels in the cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In order to understand the effects of sodium channels on synaptic signaling and response in the cerebellum, it is essential to know for each class of neuron what sodium channel isoforms are present, and the properties and distribution of each. Sodium channels are heteromultimeric membrane proteins, consisting of a large alpha subunit that forms the pore, and one or more beta subunits. Ten genes encode an alpha subunit in mammals, and of these, four are expressed in the cerebellum: Navl.l, Nav1.2, Nav1.3 and Nav1.6. Three genes encode beta subunits (Naβl–3), and all three are expressed in the cerebellum. However, Nav1.3 and Naβ3 have been found only in the developing cerebellum. All sodium channels recorded in the cerebellum are TTX-sensitive with similar kinetics, making it difficult to identify the isoforms electrically. Thus, most of the expression studies have relied on techniques that allow visualization of sodium channel subtypes at the level of mRNA and protein. In situ hybridization and immunolocalization studies demonstrated that granule cells predominantly express Nav1.2, Nav1.6, Naβ1, and Naβ2. Protein for Nav1.2 and Nav1.6 is localized primarily in granule cell parallel fibers. Purkinje cells express Nav1.1, Nav1.6, Naβl and Naβ2. The somatodendritic localization of Navl.l and Nav1.6 in Purkinje cells suggests that these isoforms are involved in the integration of synaptic input. Deep cerebellar nuclei neurons expressed Nav1.1 and Nav1.6 as well as Naβ1. Bergmann glia expressed Nav1.6, but not granule cell layer astrocytes. Some sodium channel isoforms that are not expressed normally in the adult cerebellum are expressed in animals with mutations or disease. Electrophysiological studies suggest that Nav1.6 is responsible for spontaneous firing and bursting features in Purkinje cells, but the specialized functions of the other subunits in the cerebellum remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. [Review]. Curr Opin Neurobiol 2000; 10: 732–739.

    Article  PubMed  CAS  Google Scholar 

  2. Llinas R, Nicholson C. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J Neurophysiol 1971; 34: 532–551.

    PubMed  CAS  Google Scholar 

  3. Regehr WG, Konnerth A, Armstrong CM. Sodium action potentials in the dendrites of cerebellar Purkinje cells. Proc Natl Acad Sci USA 1992; 89: 5492–5496.

    Article  PubMed  CAS  Google Scholar 

  4. Stuart G, Hausser M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 1994; 13: 703–712.

    Article  PubMed  CAS  Google Scholar 

  5. Stuart G, Sakmann B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 1995; 15: 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  6. Kay AR, Sugimori M, Llinas R. Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J Neurophysiol 1998; 80: 1167–1179.

    PubMed  CAS  Google Scholar 

  7. Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 1988; 404: 241–258.

    PubMed  CAS  Google Scholar 

  8. D’Angelo E, De Filippi G, Rossi P, Taglietti V. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J Neurophysiol 1998; 80: 493–503.

    PubMed  CAS  Google Scholar 

  9. Raman IM, Bean BP. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci. 1997; 17: 4517–4526.

    PubMed  CAS  Google Scholar 

  10. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, et al. Nomenclature of voltage-gated sodium channels. Neuron 1901; 28: 365–368.

    Article  Google Scholar 

  11. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 1995; 83: 433–442.

    Article  PubMed  CAS  Google Scholar 

  12. Isom LL, Scheuer T, Brownstein AB, Ragsdale DS, Murphy BJ, Catterall WA. Functional co-expression of the beta 1 and type IIA alpha subunits of sodium channels in a mammalian cell line. J Biol Chem 1995; 270: 3306–3312.

    Article  PubMed  CAS  Google Scholar 

  13. Beckh S, Noda M, Lubbert H, Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 1989; 8: 3611–3616.

    PubMed  CAS  Google Scholar 

  14. Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG. Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res 1997; 45: 71–82.

    Article  PubMed  CAS  Google Scholar 

  15. Black JA, Yokoyama S, Higashida H, Ransom BR, Waxman SG. Sodium channel mRNAs I, II and III in the CNS: cell-specific expression. Brain Res Mol Brain Res 1994; 22: 275–289.

    Article  PubMed  CAS  Google Scholar 

  16. Brysch W, Creutzfeldt OD, Luno K, Schlingensiepen R, Schlingensiepen KH. Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development. Exp Brain Res 1991; 86: 562–567.

    Article  PubMed  CAS  Google Scholar 

  17. Schaller KL, Caldwell JH. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system. J Comp Neurol 2000; 420: 84–97.

    Article  PubMed  CAS  Google Scholar 

  18. Schaller KL, Krzemien DM, Yarowsky PJ, Krueger BK, Caldwell JH. A novel, abundant sodium channel expressed in neurons and glia. J Neurosci 1995; 15: 3231–3242.

    PubMed  CAS  Google Scholar 

  19. Scheinman RI, Auld VJ, Goldin AL, Davidson N, Dunn RJ, Catterall WA. Developmental regulation of sodium channel expression in the rat forebrain. J Biol Chem 1989; 264: 10660–10666.

    PubMed  CAS  Google Scholar 

  20. Gong B, Rhodes KJ, Bekele-Arcuri Z, Trimmer JS. Type I and type II Na(+) channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol 1999; 412: 342–352.

    Article  PubMed  CAS  Google Scholar 

  21. Sutkowski EM, Catterall WA. Beta 1 subunits of sodium channels. Studies with subunit-specific antibodies. J Biol Chem 1990; 265: 12393–12399.

    PubMed  CAS  Google Scholar 

  22. Westenbroek RE, Merrick DK, Catterall WA. Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 1989; 3: 695–704.

    Article  PubMed  CAS  Google Scholar 

  23. Krzemien DM, Schaller KL, Levinson SR, Caldwell JH. Immunolocalization of sodium channel isoform NaCh6 in the nervous system. J Comp Neurol 2000; 420: 70–83.

    Article  PubMed  CAS  Google Scholar 

  24. Vega-Saenz DME, Rudy B, Sugimori M, Llinas R. Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proc Natl Acad Sci USA 1997; 94: 7059–7064.

    Article  Google Scholar 

  25. Tzoumaka E, Tischler AC, Sangameswaran L, Eglen RM, Hunter JC, Novakovic SD. Differential distribution of the tetrodotoxinsensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system. J Neurosci Res 2000; 60: 37–44.

    Article  PubMed  CAS  Google Scholar 

  26. Shah BS, Stevens EB, Pinnock RD, Dixon AK, Lee K. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit beta3, in rat CNS. J Physiol 2001; 534: 763–776.

    Article  PubMed  CAS  Google Scholar 

  27. Bartolomei F, Gastaldi M, Massacrier A, Planells R, Nicolas S, Cau P. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol 1997; 26: 667–678.

    Article  PubMed  CAS  Google Scholar 

  28. Chen YH, Dale TJ, Romanos MA, Whitaker WR, Xie XM, Clare JJ. Cloning, distribution and functional analysis of the type III sodium channel from human brain. Eur J Neurosci 2000; 12: 4281–4289.

    Article  PubMed  CAS  Google Scholar 

  29. Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ. Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 2001; 88: 37–53.

    Article  PubMed  CAS  Google Scholar 

  30. Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD, Hughes J, Richardson PJ, Mizuguchi K, et al. Beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 2000; 97: 2308–2313.

    Article  PubMed  CAS  Google Scholar 

  31. Kazen-Gillespie KA, Ragsdale DS, D’Andrea MR, Mattei LN, Rogers KE, Isom LL. Cloning, localization, and functional expression of sodium channel betalA subunits. J Biol Chem 2000; 275: 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  32. Ritchie JM. Sodium-channel turnover in rabbit cultured Schwann cells. Proc Roy Soc London, Series B: Biol Sci 1988; 233: 423–430.

    Article  CAS  Google Scholar 

  33. Levy-Mozziconacci A, Alcaraz G, Giraud P, Boudier JA, Caillol G, Couraud F, Autillo-Touati A. Expression of the mRNA for the β2 subunit of the voltage-dependent sodium channel in rat CNS. Eur J Neurosci 1998; 10: 2757–2767.

    Article  PubMed  CAS  Google Scholar 

  34. Sashihara S, Oh Y, Black JA, Waxman SG. Na+ channel beta 1 subunit mRNA expression in developing rat central nervous system. Brain Res Mol Brain Res 1995; 34: 239–250.

    Article  PubMed  CAS  Google Scholar 

  35. Reese KA, Caldwell JH. Immunocytochemical localization of NaCh6 in cultured spinal cord astrocytes. Glia 1999; 26: 92–96.

    Article  PubMed  CAS  Google Scholar 

  36. Black JA, Westenbroek R, Minturn JE, Ransom BR, Catterall WA, Waxman SG. Isoform-specific expression of sodium channels in astrocytes in vitro: immunocytochemical observations. Glia 1995; 14: 133–144.

    Article  PubMed  CAS  Google Scholar 

  37. Herrup K, Kuemerle B. The compartmentalization of the cerebellum. Annu Rev Neurosci 1997; 20: 61–90.

    Article  PubMed  CAS  Google Scholar 

  38. Hatten ME, Heintz N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 1995; 18: 385–408.

    PubMed  CAS  Google Scholar 

  39. McAndrew PE, Frostholm A, Evans JE, Zdilar D, Goldowitz D, Chiu IM, Burghes AH, Rotter A. Novel receptor protein tyrosine phosphatase (RPTPrho) and acidic fibroblast growth factor (FGF-1) transcripts delineate a rostrocaudal boundary in the granule cell layer of the murine cerebellar cortex. J Comp Neurol 1998; 391: 444–455.

    Article  PubMed  CAS  Google Scholar 

  40. Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, Dixon AK. Beta 3, a novel auxiliary subunit for the voltagegated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur J Neurosci 2000; 12: 3985–3990.

    Article  PubMed  CAS  Google Scholar 

  41. D’Angelo E, Rossi P, De Filippi G, Magistretti J, Taglietti V. The relationship between synaptogenesis and expression of voltagedependent currents in cerebellar granule cells in situ. J Physiol Paris 1994; 88: 197–207.

    Article  PubMed  CAS  Google Scholar 

  42. Black JA, Dib-Hajj S, Baker D, Newcombe J, Cuzner ML, Waxman SG. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci USA 2000; 97: 11598–11602.

    Article  PubMed  CAS  Google Scholar 

  43. Black JA, Fjell J, Dib-Hajj S, Duncan ID, O’Connor LT, Fried K, Gladwell Z, Tate S, Waxman SG. Abnormal expression of SNS/ PN3 sodium channel in cerebellar Purkinje cells following loss of myelin in the taiep rat. NeuroReport 1999; 10: 913–918.

    Article  PubMed  CAS  Google Scholar 

  44. Kohrman DC, Smith MR, Goldin AL, Harris J, Meisler MH. A missense mutation in the sodium channel Scn8a is responsible for cerebellar ataxia in the mouse mutant jolting. J Neurosci 1996; 16: 5993–5999.

    PubMed  CAS  Google Scholar 

  45. Smith MR, Goldin AL. A mutation that causes ataxia shifts the voltage-dependence of the Scn8a sodium channel. NeuroReport 1999; 10: 3027–3031.

    PubMed  CAS  Google Scholar 

  46. Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL. Functional analysis of the mouse Scn8a sodium channel. J Neurosci 1998; 18: 6093–6102.

    PubMed  CAS  Google Scholar 

  47. Smith RD, Goldin AT. Functional analysis of the rat I sodium channel in Xenopus oocytes. J Neurosci 1998; 18: 811–820.

    PubMed  CAS  Google Scholar 

  48. Dietrich PS, McGivern JG, Delgado SG, Koch BD, Eglen RM, Hunter JC, Sangameswaran L. Functional analysis of a voltagegated sodium channel and its splice variant from rat dorsal root ganglia. J Neurochem 1998; 70: 2262–2272.

    Article  PubMed  CAS  Google Scholar 

  49. Pan F, Beam KG. The absence of resurgent sodium current in mouse spinal neurons. Brain Res. 1999; 849: 162–168.

    Article  PubMed  CAS  Google Scholar 

  50. Raman IM, Sprunger LK, Meisler MH, Bean BP. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 1997; 19: 881–891.

    Article  PubMed  CAS  Google Scholar 

  51. Agrawal N, Hamam BN, Magistretti J, Alonso A, Ragsdale DS. Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 2001; 102: 53–64.

    Article  PubMed  CAS  Google Scholar 

  52. Stevens EB, Cox PJ, Shah BS, Dixon AK, Richardson PJ, Pinnock RD, Lee K. Tissue distribution and functional expression of the human voltage-gated sodium channel beta3 subunit. Pflugers Arch 2001; 441: 481–488.

    Article  PubMed  CAS  Google Scholar 

  53. Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM, Boyle MB, Kallen RG, Sheng ZH, Barchi RL, Sigworth FJ. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 1989; 3: 33–49.

    Article  PubMed  CAS  Google Scholar 

  54. Hartmann HA, Colom LV, Sutherland ML, Noebels JL. Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain [letter]. Nature Neurosci 1999; 2: 593–595.

    Article  PubMed  CAS  Google Scholar 

  55. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 2000; 97: 5616–5620.

    Article  PubMed  CAS  Google Scholar 

  56. Whitaker W, Faull R, Waldvogel H, Plumpton C, Burbidge S, Emson P, Clare J. Localization of the type VI voltage-gated sodium channel protein in human CNS. NeuroReport 1999; 10: 3703–3709.

    Article  PubMed  CAS  Google Scholar 

  57. Belcher SM, Zerillo CA, Levenson R, Ritchie JM, Howe JR. Cloning of a sodium channel alpha subunit from rabbit Schwann cells. Proc Natl Acad Sci USA 1995; 92: 11034–11038.

    Article  PubMed  CAS  Google Scholar 

  58. Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 1996; 379: 257–262.

    Article  PubMed  CAS  Google Scholar 

  59. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA 1998; 95: 8963–8968.

    Article  PubMed  CAS  Google Scholar 

  60. Gautron S, Dos SG, Pinto-Henrique D, Koulakoff A, Gros F, Berwald-Netter Y. The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci USA 1992; 89: 7272–7276.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, K.L., Caldwell, J.H. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2, 2–9 (2003). https://doi.org/10.1080/14734220309424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220309424

Keywords

Navigation