Skip to main content
Log in

Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Autism is a debilitating neurodevelopmental disorder of early childhood with both genetic and environmental origins. Immune system dysregulation has been hypothesized to be involved in this disorder. We quantified levels of glial fibrillary acidic protein (GFAP) and ß-actin in three areas of the brain, namely, area 9, area 40 and cerebellum, in age matched autistic and control postmortem specimen using SDS-PAGE and western blotting techniques. Significant elevations in levels of GFAP were observed in all three brain areas in autism. This report confirms a recent report showing microglial and astroglial activation in autism. Increased GFAP levels in autistic brains signify gliosis, reactive injury, and perturbed neuronal migration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauritsen M, Ewald H. The genetics of autism. Acta Psychiatr Scand. 2001;103:411–27.

    Article  PubMed  CAS  Google Scholar 

  2. Rodier PM. The early origins of autism. Sci Am. 2000;282:56–63.

    Article  PubMed  CAS  Google Scholar 

  3. Fatemi SH, Halt AR, Stary JM, Realmuto GM, Jalali-Mousavi M. Reduction in anti-apoptotic protein Bcl-2 in autistic cerebellum. Neuroreport. 2001;12:929–33.

    Article  PubMed  CAS  Google Scholar 

  4. Fatemi SH, Stary JM, Halt AR, Realmuto GR. Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord. 2001;31:529–35.

    Article  PubMed  CAS  Google Scholar 

  5. Fatemi SH, Emamiam ES, Sidwell RW, Kist DA, Earle J, Bailey K. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice. Mol Psych. 2002;7:633–40.

    Article  CAS  Google Scholar 

  6. Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study. J Aut Dev Dis. 2001;31:537–44.

    Article  CAS  Google Scholar 

  7. Perry EK, Lee ML, Martin-Ruiz CM, et al. Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry. 2001;7:1058–66.

    Article  Google Scholar 

  8. Palmen SJMC, van Engelend H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127: 2572–583.

    Article  PubMed  Google Scholar 

  9. Singh VK, Warren R, Averett R, Ghaziuddin M. Circulating autoantibodies to neuronal and glial filament proteins in autism. Ped Neurol. 1997;17:88–90.

    Article  CAS  Google Scholar 

  10. Ahlsen G, Rosengren L, Belfrage M, et al. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatry. 1993;33:734–43.

    Article  PubMed  CAS  Google Scholar 

  11. Rosengren LE, Ahlsen G, Belfrage M, Gillberg C, Haglid KG, Hamberger A. A sensitive ELISA for glial fibrillary acidic protein: Application in CSF of children. J Neurosci Methods. 1992;44:113–19.

    Article  PubMed  CAS  Google Scholar 

  12. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.

    Article  PubMed  CAS  Google Scholar 

  13. Newcombe J, Woodroofe MN, Cuzner ML. Distribution of glial fibrillary acidic protein in gliosed human white matter. J Neurochem. 1986;47:1713–19.

    Article  PubMed  CAS  Google Scholar 

  14. Delacourte A. General and dramatic glial reaction in Alzheimer brains. Neurology. 1990;40:33–7.

    PubMed  CAS  Google Scholar 

  15. Porchet P, Probst A, Bouras C, Drabernova E, Draber P, Riederer BM. Analysis of glial fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics. 2003;3:1476–85.

    Article  PubMed  CAS  Google Scholar 

  16. Araghi-Niknam M, Fatemi SH. Levels of Bcl-2 and P53 are altered in superior fontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol. 2003;23: 945–52.

    Article  PubMed  CAS  Google Scholar 

  17. Colantuoni C, Jeon OH, Hyder K, et al. Gene expression profiling in postmortem Rett Syndrome brain: Differential gene expression and patient classification. Neurobiol Dis. 2001;8:847–65.

    Article  PubMed  CAS  Google Scholar 

  18. Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;9:137–50.

    Google Scholar 

  19. Fatemi SH, Araghi-Niknam M, Laurence JA, et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schiz Res. 2004;69:317–23.

    Article  Google Scholar 

  20. Fatemi SH, Araghi-Niknam M, Laurence JA, Stary JM, Lee S, Sidwell R. Glial fibrillary acidic protein and glutamic acid decarboxylase 65 & 67 kDa proteins are increased in brains of neonatal Balb/c mice following viral infection in utero. Schiz Res. 2004;69:121–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Fatemi MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurence, J.A., Fatemi, S.H. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4, 206–210 (2005). https://doi.org/10.1080/14734220500208846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500208846

Key words

Navigation