Skip to main content
Log in

Molecular machinery governing GABAergic neuron specification in the cerebellum

  • Review Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Although the cerebellum contains a relatively small variety of neurons, the molecular machinery governing neuronal generation and/or subtype specification is still poorly understood. We identified a novel mutant mouse,cerebelless, which lacks the entire cerebellar cortex but survives up to the adult stages. Analyses of its phenotypes and identification of its responsible gene clarified thatPtf1a (pancreas transcription factor 1a), which encodes a bHLH transcription factor, is involved in cerebellar GABAergic neuron production. Together with recently published papers describing another bHLH gene,Math 1, our study proposes that two bHLH transcription factors, PTF1A and MATH1, may participate in regionalization of cerebellar neuroepithelium, defining two distinct areas, the ventricular zone and the rhombic lip, which generate GABAergic and glutamatergic neurons, respectively. Here I will describe a novel cerebellar mutant,cerebelless, review the role ofPtf1a in GABAergic neuron production, and discuss new insights into cerebellar development from the vantage point of regulation by bHLH transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson SW, Rubenstein JL. Induction and dorsoventral patterning of the telencephalon. Neuron. 2000;28:641–651.

    Article  PubMed  CAS  Google Scholar 

  2. Casarosa S, Fode C, Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development. 1999;126:525–534.

    PubMed  CAS  Google Scholar 

  3. Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 2000;14:67–80.

    PubMed  CAS  Google Scholar 

  4. Ross SE, Greenberg ME, Stiles CD. Basic helix-loop-helix factors in cortical development. Neuron. 2003;39:13–25.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci. 2004;7:510–517.

    Article  PubMed  CAS  Google Scholar 

  6. Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 2002;16:324–338.

    Article  PubMed  CAS  Google Scholar 

  7. Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 2004;23:2892–2902.

    Article  PubMed  CAS  Google Scholar 

  8. Palay SL, Chan-Palay V. Cerebellar cortex — cytology and organization. Springer-Verlag; 1974.

  9. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2:484–491.

    Article  PubMed  CAS  Google Scholar 

  10. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390(6656): 169–172.

    Article  PubMed  CAS  Google Scholar 

  11. Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, et al. Mouse Zic1 is involved in cerebellar development. J Neurosci., 1998;18:284–293.

    PubMed  CAS  Google Scholar 

  12. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47:201–213.

    Article  PubMed  Google Scholar 

  13. Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.

    Article  PubMed  Google Scholar 

  14. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.

    Article  PubMed  Google Scholar 

  15. Wingate R. Math-Map(ic)s. Neuron. 2005;48:1–4.

    Article  PubMed  Google Scholar 

  16. Heckroth JA. Quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. J Comp Neurol. 1994;343:173–182.

    Article  PubMed  CAS  Google Scholar 

  17. Collins P. Embryology and development. In: Gray’s anatomy, Ch. 3, 35th edn. New York: Churchill Livingstone; 1995.

    Google Scholar 

  18. Dahmane N, Ruiz-i-Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–3100.

    PubMed  Google Scholar 

  19. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP. Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol. 2004;270:393–410.

    Article  PubMed  CAS  Google Scholar 

  20. Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 1999;9:445–448.

    Article  PubMed  CAS  Google Scholar 

  21. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22:103–114.

    Article  PubMed  CAS  Google Scholar 

  22. Bennet MR, Gibson WG, Lemon G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Auton Neurosci. 2002;95:1–23.

    Article  PubMed  CAS  Google Scholar 

  23. Chu T, Hullinger H, Schilling K, Oberdick J. Spatial and temporal changes in natural and target deprivation-induced cell death in the mouse inferior olive. J Neurobiol. 2000;43:18–30.

    Article  PubMed  CAS  Google Scholar 

  24. Herrup K, Shojaeian-Zanjani H, Panzini L, Sunter K, Mariani J. The numerical matching of source and target populations in the CNS: The inferior olive to Purkinje cell projection. Brain Res Dev Brain Res. 1996;96:28–35.

    Article  PubMed  CAS  Google Scholar 

  25. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655): 45–51.

    Article  PubMed  CAS  Google Scholar 

  26. Kawauchi T, Chihama K, Nishimura VY, Nabeshima Y, Hoshino M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25 and JNK. Biochem. Biophys. Res. Comm. 2005;331:50–55.

    Article  PubMed  Google Scholar 

  27. Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998;12:3752–3763.

    Article  PubMed  CAS  Google Scholar 

  28. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32:128–134.

    Article  PubMed  CAS  Google Scholar 

  29. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–71.

    Article  PubMed  CAS  Google Scholar 

  30. Kawauchi T, Chihama K, Nabeshima Y, Hoshino M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J. 2003;22:4190–4201.

    Article  PubMed  CAS  Google Scholar 

  31. Nikolic M. The molecular mystery of neuronal migration: FAK and Cdk5. Trends Cell Biol. 2004;14:1–5.

    Article  PubMed  CAS  Google Scholar 

  32. Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development. 2005;132:5461–5469.

    Article  PubMed  Google Scholar 

  33. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36:1301–1305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Hoshino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, M. Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5, 193–198 (2006). https://doi.org/10.1080/14734220600589202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600589202

Key words

Navigation