Optical extinction spectroscopy used to characterize metallic nanowires

, , and

Published 6 July 2007 IOP Publishing Ltd
, , Citation L B Scaffardi et al 2007 Nanotechnology 18 315402 DOI 10.1088/0957-4484/18/31/315402

0957-4484/18/31/315402

Abstract

We present a method for sizing metallic nanowires through the analysis of the extinction spectra of the scattered light when the wires are illuminated alternatively with p- and s-polarization waves. The method is applied to isolated silver nanowires in air or immersed in index matching oil.

The dielectric function of silver is affected by the size of the cylinders, and its influence on the extinction spectra near the plasmon resonance or near the dip position is considered. Due to the size of the nanocylinders, it is necessary to include two different permittivities in the electromagnetic model to analyse the behaviour of the material under different polarization incidences. This introduces anisotropy in the system, which comprises isotropic cylinders.

The behaviour of the extinction spectra for p-waves allows us to determine the wire radii, taking into account the plasmon peak position for radii larger than 7 nm, or alternatively, by using the contrast between maximum and minimum intensity near the plasmon frequency, for radii lower than 5 nm. For s-waves, although no plasmon peak appears, we can determine the radii by analysing the contrast between the ridge of the spectra near 260–275 nm and the minimum near 320–330 nm for radii larger than 10 nm, or analysing the slope in the spectra over 350 nm, for radii below 10 nm. The present study shows that spectral extinction is a very simple and inexpensive technique that can be useful for characterizing the radius of nanocylinders when electron microscopy (TEM or SEM) is not available.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.
10.1088/0957-4484/18/31/315402