Molecular Plant
Volume 4, Issue 4, July 2011, Pages 663-678
Journal home page for Molecular Plant

Research Article
COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana Contributes to Abscisic Acid-and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction

https://doi.org/10.1093/mp/ssr023Get rights and content
Under an Elsevier user license
open archive

ABSTRACT

Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO) play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASE1 (CuAO1), of Arabidopsis was tested for its role in stress responses using the knockouts cuao1-1 and cuao1-2. PA-induced and ABA-induced NO production investigated by fluorometry and fluorescence microscopy showed that the cuao1-1 and cuao1-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in H2O2 increases. cuao1-1 and cuao1-2 showed less sensitivity to exogenous ABA supplementation during germination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA treatment, expression levels of the stress-responsive genes RD29A and ADH1 were significantly lower in the knockouts. These observations characterize cuao1-1 and cuao1-2 as ABA-insensitive mutants. Taken together, our findings extend the ABA signal transduction network to include CuAO1 as one potential contributor to enhanced NO production by ABA.

Key words

COPPER AMINE OXIDASE1
polyamines
nitric oxide
abscisic acid
signal transduction
germination

Cited by (0)

Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS.