1887

Abstract

Using a modified Eckhardt method, we visualized replicons larger than 1,000 kb in strains belonging to both subgroup A and subgroup B. The megaplasmid of CFN299 was characterized. This megaplasmid is different from a cointegrate of various plasmids and from the chromosome. Hybridization of Eckhardt blots of 15 strains with fragments derived from the megaplasmids of the type strains of subgroups A and B revealed that the megaplasmids are subgroup specific.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-392
1995-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-392.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-392&mimeType=html&fmt=ahah

References

  1. Amarger N., Bours M., Revoy F., Allard M. R., Laguerre G. 1994; Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil 161:147–156
    [Google Scholar]
  2. Cava J. R., Elias P. M., Turowski D. A., Noel K. D. 1989; Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants. J. Bacteriol. 171:8–15
    [Google Scholar]
  3. Crow V. L., Jarvis B. D. W., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium . Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  4. Eckhardt T. 1978; A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid 1:584–588
    [Google Scholar]
  5. Finan T. M. 1988; Genetic and physical analyses of group E exo mutants of Rhizobium meliloti . J. Bacteriol. 170:474–477
    [Google Scholar]
  6. Finan T. M., Kunkel B., DeVos G. F., Signer F. R. 1986; A second symbiotic megaplasmid in Rhizobium meliloti encodes exopolysaccharide and thiamine genes. J. Bacteriol. 167:66–72
    [Google Scholar]
  7. Finan T. M., Oresnik I., Bottacin A. 1988; Mutants of Rhizobium meliloti defective in succinate metabolism. J. Bacteriol. 170:3396–3403
    [Google Scholar]
  8. Flores M., González V., Pardo M. A., Leija A., Martínez E., Romero D., Piñero D., Dávila G., Palacios R. 1988; Genomic instability in Rhizobium phaseoli . J. Bacteriol. 170:1191–1196
    [Google Scholar]
  9. Graham P. H., Viteri S. E., Mackie F., Vargas A. A. T., Palacios R. 1982; Variation in acid soil tolerance among strains of Rhizobium phaseoli . Field Crops Res. 5:121–128
    [Google Scholar]
  10. Hynes M. F. 1993; Personal communication.
    [Google Scholar]
  11. Hynes M. F., Simon R., Müller P., Niehaus K., Labes M., Pühler A. 1986; The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa.. Mol. Gen. Genet. 202:356–362
    [Google Scholar]
  12. Johnston A. W. B., Beynon J. L., Buchanan-Wollaston A. V., Setchell S. M., Hirsch P. R., Beringer J. E. 1978; High frequency transfer of nodulating ability between strains and species of Rhizobium . Nature (London) 276:634–636
    [Google Scholar]
  13. Keyser H. H., Ben Bohlool B., Hu T. S., Weber D. F. 1982; Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632
    [Google Scholar]
  14. Laguerre G., Fernandez M. P., Edel V., Normand P., Armarger N. 1993; Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int. J. Syst. Bacteriol. 43:761–767
    [Google Scholar]
  15. Leigh J. A., Reed J. W., Hanks J. F., Hirsh A. M., Walker G. C. 1987; Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51:579–587
    [Google Scholar]
  16. Martínez E., Palacios R., Sánchez F. 1987; Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol. 169:2828–2834
    [Google Scholar]
  17. Martínez E., Pardo M. A., Martins F., Graham P., Franco A., Palacios R., Segovia L. 1990; Genetic relatedness and taxonomic considerations of Rhizobium strains that nodulate Phaseolus vulgaris (L.),. 831 Gresshoff P. M., Roth L. E., Stacey G., Newton W. E. Nitrogen fixation: achievements and objectives Chapman and Hall; New York:
    [Google Scholar]
  18. Martínez-Romero E. 1994; Recent developments in Rhizobium taxonomy. Plant Soil 161:11–20
    [Google Scholar]
  19. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417–426
    [Google Scholar]
  20. Masterson R. V., Prakash R. K., Atherly A. G. 1985; Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum . J. Bacteriol. 163:21–26
    [Google Scholar]
  21. Milner J. L., Araujo R. S., Handelsman J. 1992; Molecular and symbiotic characterization of exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. Mol. Microbiol. 6:3137–3147
    [Google Scholar]
  22. Noël K. D., Sánchez A., Fernández L., Leemans J., Cevallos M. A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J. Bacteriol. 158:148–155
    [Google Scholar]
  23. Nour S. M., Fernández M. P., Normand P., Cleyet-Marel J. C. 1994; Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol. 44:511–522
    [Google Scholar]
  24. Novikova N., Safronova V. 1992; Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa . FEMS Microbiol. Lett. 93:261–268
    [Google Scholar]
  25. Nuti M. P., Ledeboer A. M., Lepidi A. A., Schilperoort R. A. 1977; Large plasmids in different Rhizobium species. J. Gen. Microbiol. 100:241–248
    [Google Scholar]
  26. O’Connell K. P., Handelsman J. 1993; Foliar chlorosis in symbiotic host and nonhost plants induced by Rhizobium tropici type B strains. Appl. Environ. Microbiol. 59:2184–2189
    [Google Scholar]
  27. Pardo M. A., Lagúnez J., Miranda J., Martínez E. 1994; Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol. Microbiol. 11:315–321
    [Google Scholar]
  28. Prakash R. K., Atherly A. G. 1986; Plasmids of Rhizobium and their role in symbiotic nitrogen fixation. Int. Rev. Cytol. 104:1–24
    [Google Scholar]
  29. Priefer U. B. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum bv. viciae VF39. J. Bacteriol. 171:6161–6168
    [Google Scholar]
  30. Quinto C., de La Vega H., Flores M., Fernández L., Ballado T., Soberón G., Palacios R. 1982; Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli . Nature (London) 229:724–726
    [Google Scholar]
  31. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to a high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251
    [Google Scholar]
  32. Rosenberg C., Boistard P., Dénarié J., Casse-Delbart F. 1981; Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti . Mol. Gen. Genet. 184:326–333
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular cloning: a laboratory manual,. , 2. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  34. Segovia L., Piñero D., Palacios R., Martínez-Romero E. 1991; Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum . Appl. Environ. Microbiol. 57:426–433
    [Google Scholar]
  35. Simon R. 1984; High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-mob transposon. Mol. Gen. Genet. 196:413–420
    [Google Scholar]
  36. van Berkum P., Navarro R. B., Vargas A. A. T. 1994; Classification of the uptake hydrogenase-positive (Hup+) bean rhizobia as Rhizobium tropici . Appl. Environ. Microbiol. 60:554–561
    [Google Scholar]
  37. Wheatcroft R., McRae D. G., Miller R. W. 1990; Changes in the Rhizobium meliloti genome and the ability to detect supercoiled plasmids during bacteroid development. Mol. Plant Microbe Interact. 3:9–17
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-392
Loading
/content/journal/ijsem/10.1099/00207713-45-2-392
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error