1887

Abstract

Abstract

Strains of sp. nov. were isolated from the hot spring and runoff at Agnano, Naples, Italy, and from the hot spring at São Pedro do Sul in central Portugal, while strains of sp. nov. were isolated from the hot springs at São Pedro do Sul, São Gemil, and Alcafache in central Portugal. The strains of and produce orange-pigmented colonies and have an optimum growth temperature of about 45 to 50°C. The type strains of the two new species are extremely gamma radiation resistant. The fatty acids of these new species are primarily branched-chain fatty acids. The two new species can be distinguished from each other by the lower pH range of than of by their fatty acid compositions, and by several biochemical parameters, including the ability of to grow in minimal medium without yeast extract. 16S rRNA gene sequencing also showed that the isolates constitute two species and that these species are distinct from the other species of the genus The type strain of is AG-3a (= DSM 11300), and the type strain of is ALT-1b (= DSM 11303).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-939
1997-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-939.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-939&mimeType=html&fmt=ahah

References

  1. Anderson A. W., Nordan H. C., Cain R. F., Parrish G., Duggan D. 1956; Studies on a radio-resistant micrococcus. I. The isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technol. 10:575–577
    [Google Scholar]
  2. Boon J. J., Van De Graaf B., Schuyl P. J. W., De Lange F., De Leeuw J. W. 1977; The mass spectrometry of iso and anteiso monoenoic fatty acids. Lipids 12:717–721
    [Google Scholar]
  3. Brooks B. W., Murray R. G. E. 1981; Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. Syst. Bacteriol. 31:353–360
    [Google Scholar]
  4. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  5. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus. Syst. Appl. Microbiol. 15:352–356
    [Google Scholar]
  6. Carreto L., Moore E., Nobre M. F., Wait R., Riley P. W., Sharp R. J., da Costa M. S. 1996; Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int. J. Syst. Bacteriol. 46:460–465
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  8. Davis N. S., Silverman G. J., Masurovsky E. B. 1963; Radiation-resistant, pigmented coccus isolated from haddock tissue. J. Bacteriol. 86:294–298
    [Google Scholar]
  9. Degryse E., Glansdorff N., Piérard A. 1978; A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch. Microbiol. 117:189–196
    [Google Scholar]
  10. Deutsche Sammlung von Mikroorganismen und Zellkulturen 1993 DSM catalogue of strains Deutsche Sammlung von Mikroorganismen und Zellkulturen; Braunschweig, Germany:
    [Google Scholar]
  11. Donato M. M., Seleiro E. A., da Costa M. S. 1990; Polar lipid and fatty acid composition of strains of the genus Thermus. Syst. Appl. Microbiol. 13:234–239
    [Google Scholar]
  12. Embley T. M., O'Donnell A. G., Wait R., Rostron J. 1987; Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus. Syst. Appl. Microbiol. 10:20–27
    [Google Scholar]
  13. Embley T. M., Thomas R. H., Williams R. A. D. 1993; Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus. Syst. Appl. Microbiol. 16:25–29
    [Google Scholar]
  14. Felsenstein J. 1993 PHYLIP (phylogenetic inference package), version 3.5.1 Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  15. Ferreira A. C., Nobre M. F., da Costa M. S. Unpublished data
    [Google Scholar]
  16. Green P. N., Bousfield I. J. 1983; Emendation of Methylobacterium Patt, Cole and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Good-fellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33:875–877
    [Google Scholar]
  17. Hensel R., Demharter W., Kandier O., Kroppenstedt R. M., Stackebrandt E. 1986; Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol. 36:444–453
    [Google Scholar]
  18. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the “Thermotogales.”. Syst. Appl. Microbiol. 12:32–37
    [Google Scholar]
  19. Ito H. 1977; Isolation of Micrococcus radiodurans occurring in radiodurised sawdust culture media of mushrooms. Agric. Biol. Chem. 41:35–41
    [Google Scholar]
  20. Ito H., Watanabe H., Takehisa N., Iizuka H. 1983; Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric. Biol. Chem. 47:1239–1247
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  22. Kobatake M., Tamabe S., Hasegawa S. 1973; Nouveau micrococcus radioresistant à pigment rouge, isolé de feces de Lama glama, et son utilisation comme indicateur microbiologique de la radio-sterilisation. C. R. Soc. Biol. 167:1506–1510
    [Google Scholar]
  23. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38:358–361
    [Google Scholar]
  24. Lewis N. F. 1973; Radio-resistant Micrococcus radiophilus sp. nov. isolated from irradiated Bombay duck (Harpodon nehereus). Curr. Sci. 42:504
    [Google Scholar]
  25. Love C. A., Patel B. K. C., Ludwig W., Stackebrandt E. 1993; The phylogenetic position of Dictyoglomus thermophilum based on 16S rRNA sequence analysis. FEMS Microbiol. Lett. 107:317–320
    [Google Scholar]
  26. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3485–3487
    [Google Scholar]
  27. Manaia C. M., da Costa M. S. 1991; Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J. Gen. Microbiol. 137:2643–2648
    [Google Scholar]
  28. Masters C. I., Murray R. G. E., Moseley B. E. B., Minton K. W. 1991; DNA polymorphisms in new isolates of ‘Deinococcus radiopugnans.’. J. Gen. Microbiol. 137:1459–1469
    [Google Scholar]
  29. Mattimore V., Battista J. R. 1996; Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178:633–637
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  31. Minton K. W. 1994; DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13:9–15
    [Google Scholar]
  32. Moseley B. E. B. 1967; The isolation and some properties of radiation-sensitive mutants of Micrococcus radiodurans. J. Gen. Microbiol. 49:293–300
    [Google Scholar]
  33. Moseley B. E. B., Mattingly A. 1971; Repair of irradiated transforming deoxyribonucleic acid in wild-type and a radiation-sensitive mutant of Micrococcus radiodurans. J. Bacteriol. 105:976–983
    [Google Scholar]
  34. Nishimura Y., Ino T., Iisuka H. 1988; Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38:209–211
    [Google Scholar]
  35. Nobre M. F., Trüper H. G., da Costa M. S. 1996; Transfer of Thermus ruber (Loginova et al, 1984), Thermus silvanus (Tenreiro et al, 1995), and Thermus chliarophilus (Tenreiro et al, 1995) to Meiothermus gen. nov. as Meiothermus ruber comb, nov., Meiothermus silvanus comb, nov., and Meiothermus chliarophilus comb, nov., respectively, and emendation of the genus Thermus. Int. J. Syst. Bacteriol. 46:604–606
    [Google Scholar]
  36. Oyaizu H., Stackebrandt E., Schleifer K. H., Ludwig W., Pohla H., Ito H., Hirata A., Oyaizu Y., Komagata K. 1987; A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int. J. Syst. Bacteriol. 37:62–67
    [Google Scholar]
  37. Prado A., da Costa M. S., Madeira V. M. C. 1988; Effect of growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol. 134:1653–1660
    [Google Scholar]
  38. Rainey F. A., Stackebrandt E. 1993; Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb, nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolytics as Coprothermobacter proteolyticus (Ollivier et al 1985) comb. nov. Int. J. Syst. Bacteriol. 43:857–859
    [Google Scholar]
  39. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol. 15:197–202
    [Google Scholar]
  40. Rainey F. A., Fritze D., Stackebrandt E. 1994; The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol. Lett. 115:205–212
    [Google Scholar]
  41. Rainey F. A., Nobre M. F., Shumann P., Stackebrandt E., da Costa M. S. 1997; Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47:510–514
    [Google Scholar]
  42. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol. 175:4772–4779
    [Google Scholar]
  43. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46:1088–1092
    [Google Scholar]
  44. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49:1–7
    [Google Scholar]
  45. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  46. Santos M. A., Williams R. A. D., da Costa M. S. 1989; Numerical taxonomy of Thermus isolates from hot springs in Portugal. Syst. Appl. Microbiol. 12:310–315
    [Google Scholar]
  47. Schleifer K.-H., Kandier O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  48. Silva M. T., Sousa J. C. F. 1973; Ultrastructure of the cell wall and cytoplasmic membrane of gram-negative bacteria with different fixation techniques. J. Bacteriol. 113:953–962
    [Google Scholar]
  49. Silva M. T., Macedo P. M. 1987; Improved Thiéry staining for the ultrastructural detection of polysaccharides. J. Submicrosc. Cytol. 19:677–681
    [Google Scholar]
  50. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov.. FEMS Microbiol. Lett. 52:33–40
    [Google Scholar]
  51. Tenreiro S., Nobre M. F., da Costa M. S. 1995; Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int. J. Syst. Bacteriol. 45:633–639
    [Google Scholar]
  52. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol. Lett. 60:251–254
    [Google Scholar]
  53. Weisburg W. G., Giovanonni S. J., Woese C. R. 1989; The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol. 11:128–134
    [Google Scholar]
  54. Williams R. A. D., da Costa M. S. 1992; The genus Thermus and related microorganisms. 3745–3753 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes, 2nd ed.. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  55. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  56. Yoshinaka T., Yano K., Yamaguchi H. 1973; Isolation of a highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric. Biol. Chem. 37:2269–2275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-939
Loading
/content/journal/ijsem/10.1099/00207713-47-4-939
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error