1887

Abstract

Sequences of the 16S rDNA from all available type strains of species have been determined and were compared to those of other , a few selected and . The clear separation of and is confirmed. Most significantly the sequence comparison revealed a genetic divergence between species originated from freshwater sources and those of truly marine and halophilic nature. Major phylogenetic branches of the contain (i) marine and halophilic species, (ii) freshwater species together with species and (iii) species of the genera and as recently reclassif ied [Guyoneaud, R. & 6 other authors (1998). 48, 957–964], namely (formerly ). (formerly ), and (formerly ). The genetic relationships between the species and groups are not in congruence with the current classification of the and a reclassification is proposed on the basis of 16S rDNA sequence similarity supported by selected phenotypic properties. The proposed changes include the transfers of and to comb. nov. and comb, nov., of and to the new genus as comb. nov., comb. nov., and comb. nov., of to the new genus as comb, nov., of and to the new genus as comb. nov. and comb, nov., of and to the new genus as comb. nov. and comb, nov., of to gen. nom. rev., of to the new genus as comb, nov., and of to the new genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1129
1998-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1129.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1129&mimeType=html&fmt=ahah

References

  1. Ambler R. P., Daniel M., Hermoso J., Meyer T. E., Bartsch R. G., Kamen M. D. 1979; Cytochrome c2 sequence variation among the recognized species of purple nonsulfur photosynthetic bacteria. Nature 278:659–660
    [Google Scholar]
  2. Burgess J. G., Kawaguchi R., Yamada A., Matsunaga T. 1994; Rhodobacter marinus sp. nov.: a new marine-hydrogen producing photosynthetic bacterium which is sensitive to oxygen and sulphide. Microbiology 140:965–970
    [Google Scholar]
  3. Caumette P., Baulaigue R., Matheron R. 1988; Characteritation of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas. Syst Appl Microbiol 10:284–292
    [Google Scholar]
  4. Caumette P., Baulaigue R., Matheron R. 1991; Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155:170–176
    [Google Scholar]
  5. Caumette P., Imhoff J. F., Süling J., Matheron R. 1997; Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167:11–18
    [Google Scholar]
  6. DeWeerd K. A., Mandelco L, Tanner R. S., Woese C. R., Suflita J. M. 1990; Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30
    [Google Scholar]
  7. Dickerson R. E. 1980; Evolution and gene transfer in purple photosynthetic bacteria. Nature 283:210–212
    [Google Scholar]
  8. Dilling W., Liesack W., Pfennig N. 1995; Rhabdochromatium marinum gen. nom. rev., sp. nov., a purple sulfur bacterium from salt marsh microbial mat. Arch Microbiol 164:125–131
    [Google Scholar]
  9. Eimhjellen K. E. 1970; Thiocapsa pfennigii sp. nov. A new species of the phototrophic sulfur bacteria. Arch Mikrobiol 73:193–194
    [Google Scholar]
  10. Eimhjellen K. E., Steensland H., Traetteberg J. 1967; A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Mikrobiol 59:82–92
    [Google Scholar]
  11. Felsenstein J. 1989; phylip, phylogenetic inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  12. Fowler V. J., Pfennig N., Schubert W., Stackebrandt E. 1984; Towards a phylogeny of phototrophic purple sulfur bacteria -16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Arch Microbiol 139:382–387
    [Google Scholar]
  13. Gibson J., Stackebrandt E., Zablen L. B., Gupta R., Woese C. R. 1979; A phylogenetic analysis of the purple photo-synthetic bacteria. Curr Microbiol 3:59–64
    [Google Scholar]
  14. Gorlenko V. M. 1974; The oxidation of thiosulfate by Amoebobacter roseus in the dark under microaerophilic conditions. Mikrobiologiya 43:729–731 in Russian
    [Google Scholar]
  15. Guyoneaud R., Matheron R., Liesack W., Imhoff J. F., Caumette P. 1997; Thiorhodococcus minus gen. nov., sp. nov., a new purple sulfur bacterium isolated from coastal lagoon sediments. Arch Microbiol 168:16–23
    [Google Scholar]
  16. Guyoneaud R., Süling J., Petri R., Matheron R., Caumette P., Pfennig N., Imhoff J. F. 1998; Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses and description of Thiolamprovum gen. nov. Int J Syst Bacteriol 48:957–964
    [Google Scholar]
  17. Hiraishi A., Ueda Y. 1994; Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulvum gen. nov. Int J Syst Bacteriol 44:15–23
    [Google Scholar]
  18. Imhoff J. F. 1984a; Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 34:338–339
    [Google Scholar]
  19. Imhoff J. F. 1984b; Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 256:85–89
    [Google Scholar]
  20. Imhoff J. F. 1991; Polar lipids and fatty acids in the genus Rhodobacter . Syst Appl Microbiol 14:228–234
    [Google Scholar]
  21. Imhoff J. F., Bias-Imhoff U. 1995; Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In Anoxygenic Photosynthetic Bacteria179–205 Blankenship R. E., Madigan M. T., Bauer C. E. Dordrecht, The Netherlands: Kluwer;
    [Google Scholar]
  22. Imhoff J. F., Süling J. 1996; The phylogenetic relationship among Ectothiorhodospiraceae. A re-evaluation of their taxonomy on the basis of rDNA analyses. Arch Microbiol 165:106–113
    [Google Scholar]
  23. Imhoff J. F., Trüper H. G. 1980a; Chromatium purpuratum sp. nov., a new species of the Chromatiaceae. Zentbl Bakteriol I Abt Orig C1:61–69
    [Google Scholar]
  24. Imhoff J. F., Trüper H. G. 1980b; In Validation of the publication of new names and new combinations previously effectively published outside the USB, List no. 4 . Int J Syst Bacteriol 30:601
    [Google Scholar]
  25. Imhoff J. F., Trüper H. G. 1982; Taxonomic classification of photosynthetic bacteria (anoxyphotobacteria, phototrophic bacteria). In Handbook of Bio solar Resources 1 part 1, Basic Principles 513–522 Mitsui A., Black C. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  26. Imhoff J. F., Petri R., Süling J. 1998; Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb, nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb, nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb, nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb, nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb, nov., and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48:793–798
    [Google Scholar]
  27. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  28. Kämpf C., Pfennig N. 1980; Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum . Arch Microbiol 127:125–135
    [Google Scholar]
  29. Kampf C., Pfennig N. 1986; Isolation and characterization of some chemoautotrophic Chromatiaceae. J Basic Microbiol 26:507–515
    [Google Scholar]
  30. Kondratieva E. N., Zhukov V. G., Ivanovsky R. N., Petushkova Yu. P., Monosov E. Z. 1976; The capacity of phototrophic sulfur bacterium Thiocaposa roseopersicina for chemosynthesis. Arch Microbiol 108:287–292
    [Google Scholar]
  31. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. 1992; International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Madigan M. T. 1986; Chromatium tepidum sp. nov., a thermo-philic photosynthetic bacterium of the family Chromatiaceae . Int J Syst Bacteriol 36:222–227
    [Google Scholar]
  33. Migula W. 1900 System der Bakterien Jena: Gustav Fischer;
    [Google Scholar]
  34. Mullis K. B., Faloona F. 1987; Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  35. Overmann J., Tuschak C. 1997; Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167:302–309
    [Google Scholar]
  36. Perty M. 1852 Zur Kenntnis kleinster Lebensformen1–228 Bern: Jent und Reinert;
    [Google Scholar]
  37. Pfennig N., Trüper H. G. 1974; The phototrophic bacteria. In Bergey’s Manual of Determinative Bacteriology, 8.24–75 Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  38. Pfennig N., Trüper H. G. 1989; Family Chromatiaceae . In Bergeys Manual of Systematic Bacteriology 31637–1653 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  39. Pfennig N., Trüper H. G. 1992; The family Chromatiaceae . In The Prokarvotes3200–3221 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad SciUSA 745463–5467
    [Google Scholar]
  41. Stackebrandt E., Fowler V. J., Schubert W., Imhoff J. F. 1984; Towards a phylogeny of phototrophic purple sulfur bacteria -the genus Ectothiorhodospira . Arch Microbiol 137:366–370
    [Google Scholar]
  42. Strzeszewski B. 1913; Beiträge zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bull Acad Sci Cracovie Ser B 1913:309–334
    [Google Scholar]
  43. Thiemann B., Imhoff J. F. 1996; Differentiation of Ectothiorhodospiraceae based on their fatty acid composition. Syst Appl Microbiol 19:223–230
    [Google Scholar]
  44. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  45. Trüper H. G. 1987; Phototrophic bacteria (an incoherent group of prokaryotes). A taxonomic versus phylogenetic survey. Microbiologia SEM 3:71–89
    [Google Scholar]
  46. Trüper H. G., Jannasch H. W. 1968; Chromatium buderi nov. spec, eine neue Art der “großen” Thiorhodaceae . Arch Mikrobiol 61:363–372
    [Google Scholar]
  47. Wahlund T. M., Woese C. R., Castenholz R. W., Madigan M. T. 1991; A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90
    [Google Scholar]
  48. Winogradsky S. 1888; Zur Morphologie und Physiologie der Schwefelbakterien. In Beiträge zur Morphologie und Physiologie der Bakterien Heft 1 Leipzig: Felix;
    [Google Scholar]
  49. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1129
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error