1887

Abstract

A mesophilic sulfate reducer, strain ASRB2, was isolated with acetate as sole carbon and energy source from granular sludge of a laboratory-scale upflow anaerobic sludge bed reactor fed with acetate and sulfate. The bacterium was oval-shaped, 1·3 × 1·9-2·2 μm, non-motile and Gram-negative. Optimum growth with acetate occurred around 37 °C in freshwater medium (doubling time: 1·7-2·2 d). Enzyme studies indicated that acetate was oxidized via the carbon monoxide dehydrogenase pathway. Growth was not supported by other organic acids, such as propionate, butyrate or lactate, alcohols such as ethanol or propanol, and hydrogen or formate. Sulfite and thiosulfate were also used as electron acceptors, but sulfur and nitrate were not reduced. Phylogenetically, strain ASRB2 clustered with the delta subclass of the Its closest relatives were and Strain ASRB2 is described as the type strain of gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-345
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-345.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-345&mimeType=html&fmt=ahah

References

  1. Alphenaar P. A., Visser A., Lettinga G. 1993; The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Biores Technol 43:249–258
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Colleran E., Finnegan S., Lens P. 1995; Anaerobic treatment of sulphate-containing waste streams. Antonie Leeuwenhoek 67:29–46
    [Google Scholar]
  4. Doetsch R. N. 1981; Determinative methods of light microscopy. Manual of Methods for General Bacteriology,21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Gujer W., Zehnder A. J. B. 1983; Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167
    [Google Scholar]
  6. Harada H., Uemura S., Momonoi K. 1994; Interaction between sulfate-reducing and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res 28:355–367
    [Google Scholar]
  7. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stams A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240
    [Google Scholar]
  8. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3b:117–132
    [Google Scholar]
  9. Isa Z., Grusenmeyer S., Verstraete W. 1986; Sulfate reduction relative to methane production in high-rate anaerobic digestion: technical aspects. Appl Environ Microbiol 51:572–579
    [Google Scholar]
  10. Jetten M. S. M., Stams A. J. M., Zehnder A. J. B. 1990; Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344
    [Google Scholar]
  11. Jetten M. S. M., Stams A. J. M., Zehnder A. J. B. 1992; Methanogenesis from acetate : a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina sp. FEMS Microbiol Rev 88:181–198
    [Google Scholar]
  12. Ludwig W., Strunk O. 1996; arb, a Software Environment for Sequence Data: a Preliminary Manual. Dept of Microbiology, Technical University of Munich; Germany:
    [Google Scholar]
  13. McCartney D. M., Oleszkiewicz J. A. 1991; Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res 25:203–209
    [Google Scholar]
  14. Mahler H. R., Cordes E. H. 1969; Biological Chemistry. , 5. New York: Harper & Row;
    [Google Scholar]
  15. Oude Elferink S. J. W. H., Visser A., Hulshoff Pol L. W., Stams A. J. M. 1994; Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136
    [Google Scholar]
  16. Oude Elferink S. J. W. H., Maas R. N., Harmsen H. J. M., Stams A. J. M. 1995; Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. ArchMicrobiol 164:119–124
    [Google Scholar]
  17. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans . Nature 183:481–482
    [Google Scholar]
  18. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., athermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89
    [Google Scholar]
  19. Schauder R., Eikmanns B., Thauer R. K., Widdel F., Fuchs G. 1986; Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172
    [Google Scholar]
  20. Smith P. H., Mah R. A. 1966; Kinetics of acetate metabolism during sludge digestion. Appl Microbiol 14:368–371
    [Google Scholar]
  21. Thomas P. E., Ryan D., Levin W. 1976; An improved staining procedure for the detection of the peroxidase activity of the cytochrome P450 on sodium dodecyl sulfate polyacrylamide gel. Anal Biochem 75:168–176
    [Google Scholar]
  22. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii . Antonie Leeuwenhoek 30:225–238
    [Google Scholar]
  23. Visser A. 1995; The anaerobic treatment of sulfate containing wastewater. PhD thesis Wageningen Agricultural University;
    [Google Scholar]
  24. Visser A., Beeksma I., van der Zee F., Stams A. J. M., Lettinga G. 1993a; Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl Microbiol Biotechnol 40:549–556
    [Google Scholar]
  25. Visser A., Alphenaar P. A., Gao Y., van Rossem G., Lettinga G. 1993b; Granulation and immobilisation of methanogenic and sulfate reducing bacteria in high rate anaerobic reactors. Appl Microbiol Biotechnol 40:575–581
    [Google Scholar]
  26. Wallrabenstein C., Gorny N., Springer N., Ludwig W., Schink B. 1995; Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov. Syst Appl Microbiol 18:62–66
    [Google Scholar]
  27. Whitman W. B., Bowen T. L., Boone D. R. 1992; The methanogenic bacteria. The Prokaryotes,, 2.719–767 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  28. Widdel F. 1987; New types of acetate-oxidizing, sulfate-reducing Desulfobacter sp., D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148:286–291
    [Google Scholar]
  29. Widdel F. 1992; The genus Desulfotomaculum. . The Prokaryotes,, 2.1792–1799 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  30. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes,, 2.3352–3378 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  31. Widdel F., Pfennig N. 1981; Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans . Arch Microbiol 159:282–288
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-345
Loading
/content/journal/ijsem/10.1099/00207713-49-2-345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error