1887

Abstract

In an attempt to understand better the micro-organisms involved in anaerobic degradation of aromatic hydrocarbons in the Fe(III)-reducing zone of petroleum-contaminated aquifers, Fe(III)-reducing micro-organisms were isolated from contaminated aquifer material that had been adapted for rapid oxidation of toluene coupled to Fe(III) reduction. One of these organisms, strain H-5, was enriched and isolated on acetate/Fe(III) medium. Strain H-5 is a Gram-negative strict anaerobe that grows with various simple organic acids such as acetate, propionate, lactate and fumarate as alternative electron donors with Fe(III) as the electron acceptor. In addition, strain H-5 also oxidizes long-chain fatty acids such as palmitate with Fe(III) as the sole electron acceptor. Strain H-5 can also grow by fermentation of citrate or fumarate in the absence of an alternative electron acceptor. The primary endproducts of citrate fermentation are acetate and succinate. In addition to various forms of soluble and insoluble Fe(III), strain H-5 grows with nitrate, Mn(IV), fumarate and the humic acid analogue 2,6-anthraquinone disulfonate as alternative electron acceptors. As with other organisms that can oxidize organic compounds completely with the reduction of Fe(III), cell suspensions of strain H-5 have absorbance maxima indicative of a type cytochrome(s). It is proposed that strain H-5 represents a novel genus in the phylum and that it should be named sp. nov., gen. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1615
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1615.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1615&mimeType=html&fmt=ahah

References

  1. Anderson R. T., Rooney-Varga J. N., Gaw C. V., Lovley D. R. 1998; Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32:1222–1229
    [Google Scholar]
  2. Bak F., Finster K., Rothfub F. 1992; Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157:529–534
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. Boone D. R., Liu Y., Zhao Z.-J., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C. 1995; Bacillus infernus sp. nov., an Fe(lII)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacterial 45:441–448
    [Google Scholar]
  5. Caccavo F. Jr, Blakemore R. P., Lovley D. R. 1992; A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 58:3211–3216
    [Google Scholar]
  6. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  7. Caccavo F. Jr, Coates J. D., Rossello-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., McInerney M. J. 1996; Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)- reducing bacterium. Arch Microbiol 165:370–376
    [Google Scholar]
  8. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458
    [Google Scholar]
  9. Coates J. D., Lonergan D. J., Phillips E. J. P., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413
    [Google Scholar]
  10. Coates J. D., Phillips E. J. P., Lonergan D. J., Jenter H., Lovley D. R. 1996; Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536
    [Google Scholar]
  11. Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R. 1998a; Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509
    [Google Scholar]
  12. Coates J. D., Councell T., Lovley D. R., Lonergan D. J. 1998b; Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe in press
    [Google Scholar]
  13. Coleman M. L., Hedrick D. B., Lovley D. R., White D. C., Pye K. 1993; Reduction of Fe(III) in sediments by sulphate- reducing bacteria. Nature 361:436–438
    [Google Scholar]
  14. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  15. Finster K., Bak F. 1993; Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria. Appl Environ Microbiol 59:1452–1460
    [Google Scholar]
  16. Greene A. C., Patel B. K. C., Sheehy A. J. 1997; Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509
    [Google Scholar]
  17. Hiraishi A., Kishimoto N., Kosako Y., Wakao N., Tano T. 1995; Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium capsulatum. FEMS Microbiol Lett 132:91–94
    [Google Scholar]
  18. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
    [Google Scholar]
  19. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  21. Laverman A., Switzer Blum J., Schaefer J. K., Phillips E. J., Lovley D. R., Oremland R. 1995; Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561
    [Google Scholar]
  22. Liesack W., Finster K. 1994; Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758
    [Google Scholar]
  23. Liesack W., Bak F., Kreft J. U., Stackebrandt E. 1994; Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90
    [Google Scholar]
  24. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  25. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
    [Google Scholar]
  26. Lovley D. R. 1995; Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231
    [Google Scholar]
  27. Lovley D. R. 1997; Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol 18:75–81
    [Google Scholar]
  28. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  29. Lovley D. R., Phillips E. J. P. 1988a; Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol J 6:145–155
    [Google Scholar]
  30. Lovley D. R., Phillips E. J. P. 1988b; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  31. Lovley D. R., Phillips E. J. P. 1989; Requirement for a microbial consortium to completely oxidize glucose in Fe(III)- reducing sediments. Appl Environ Microbiol 55:3234–3236
    [Google Scholar]
  32. Lovley D. R., Stolz J. F., Nord G. L., Phillips E. J. P. 1987; Anaerobic production of magnetite by a dissimilatory iron- reducing microorganism. Nature 330:252–254
    [Google Scholar]
  33. Lovley D. R., Baedecker M. J., Lonergan D. J., Cozzarelli I. M., Phillips E. J. P., Siegel D. I. 1989a; Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299
    [Google Scholar]
  34. Lovley D. R., Phillips E. J. P., Lonergan D. J. 1989b; Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706
    [Google Scholar]
  35. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344
    [Google Scholar]
  36. Lovley D. R., Chapelle F. H., Woodward J. C. 1994a; Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol 28:1205–1210
    [Google Scholar]
  37. Lovley D. R., Woodward J. C., Chapelle F. H. 1994b; Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–131
    [Google Scholar]
  38. Lovley D. R., Phillips E. J. P., Lonergan D. J., Widman P. K. 1995; Fe(III) and S° reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138
    [Google Scholar]
  39. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips E. J. P., Woodward J. C. 1996; Humic substances as electron acceptors for microbial respiration. Nature 382:445–448
    [Google Scholar]
  40. Lovley D. R., Coates J. D., Saffarini D., Lonergan D. J. 1997 Diversity of dissimilatory Fe(III)-reducing bacteria. Iron and Related Transition Metals in Microbial Metabolism187–215 Edited by Winkelman G., Carrano C. J. Chur, Switzerland: Harwood Academic Publishers;
    [Google Scholar]
  41. Lovley D. R., Fraga J. L., Blunt-Harris E. L., Hayes L. A., Phillips E. J. P., Coates J. D. 1998; Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157
    [Google Scholar]
  42. Ludwig W., Bauer S. H., Bauer M.7 other authors 1997; Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190
    [Google Scholar]
  43. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McGaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111
    [Google Scholar]
  44. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987
    [Google Scholar]
  45. Moser D., Nealson K. 1996; Growth of the facultative anaerobe Shewanellaputrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105
    [Google Scholar]
  46. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetateoxidizing bacterium. Arch Microbiol 110:3–12
    [Google Scholar]
  47. Roden E. E., Lovley D. R. 1993; Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742
    [Google Scholar]
  48. Rossello-Mora R. A., Caccavo F. Jr, Osterlehner K., Springer N., Spring S., Schuler D., Ludwig W., Amann R., Vanncanneyt M., Schleifer K. H. 1994; Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducing bacterium. Syst Appl Microbiol 17:569–573
    [Google Scholar]
  49. Rossello-Mora R. A., Ludwig W., Kampfer P., Amann R., Schleifer K. H. 1995; Ferrimonas baleárica gen. nov., spec, nov., a new marine facultative Fe(III)-reducing bacterium. Syst Appl Microbiol 18:196–202
    [Google Scholar]
  50. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J. 1997; Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547
    [Google Scholar]
  51. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R. 1998; Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67
    [Google Scholar]
  52. Walker J. C. G. 1987; Was the Archaean biosphere upside down?. Nature 329:710–712
    [Google Scholar]
  53. Widdel F. 1988 Microbiology and ecology of sulfate- and sulfur-reducing bacteria. Biology of Anaerobic Microorganisms469–585 Edited by Zehnder A. J. B. New York: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1615
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error