1887

Abstract

Summary: Four strains ( NCIMB 8826, LbTGS1.4, ATCC 393 and KLD) were tested for their ability to produce and secrete heterologous proteins. These strains were first screened with an α-amylase reporter under the control of a set of expression or expression/secretion signals from various lactic acid bacteria. With most of the constructions tested, the level of extracellular production was highest in NCIMB 8826, and lowest in LbTGS1.4. These two strains were next assayed using a model antigen consisting of the N-terminal part of the M6 protein from fused to the linear epitope ELDKWAS from human immunodeficiency virus gp41 protein. Secretion of this heterologous protein was inefficient in LbTGS1.4, which accumulated a large intracellular pool of the unprocessed precursor, whereas NCIMB 8826 was able to secrete the antigen to a level as high as 10 mg I.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2733
1997-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2733.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2733&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  2. Casadaban M. J., Cohen S. 1980; Analysis of gene control signals by DNA fusion cloning in E. . coli. J Mol Biol 138:179–207
    [Google Scholar]
  3. Chassy B. M. 1987; Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol Rev 46:297–312
    [Google Scholar]
  4. van Dijl J. M., Smith H., Bron S., Venema G. 1988; Synthesis and processing of Escherichia coli TEM β-lactamase and Bacillus licheniformis α-amylase in E. coli: the role of signal peptidase I. Mol Gen Genet 214:55–61
    [Google Scholar]
  5. Dutot P. 1996 Evaluation des lactobacilles comme vecteurs vivants de vaccination PhD thesis Université Louis-Pasteur de Strasbourg;
    [Google Scholar]
  6. Fernandes C. F., Shahani K. M., Amer M. A. 1987; Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol Rev 46:343–356
    [Google Scholar]
  7. Fischetti V. A., Medagiini D., Oggioni M., Pozzi G. 1993; Expression of foreign proteins on Gram-positive commensal bacteria for mucosal vaccine delivery. Curr Opin Biotechnol 4:603–610
    [Google Scholar]
  8. Fitzsimons A., Hols P., Jore J., Leer R. J., OʹConnell M., Delcour J. 1994; Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus α-amylase gene. Appl Environ Microbiol 60:3529–3535
    [Google Scholar]
  9. Gibson S. A. W., Conway P. L. 1992; Recovery of a probiotic organism from human faeces after oral dosing. . In Human Health: the Contribution of Microorganisms pp. 119–141 . Edited by Gibson S. A. W. New York: Springer;
    [Google Scholar]
  10. Hollingshead S. K., Fischetti V. A., Scott J. R. 1986; Complete nucleotide sequence of type 6 M protein of the group A Streptococcus: repetitive structure and membrane anchor. J Biol Chem 261:1677–1686
    [Google Scholar]
  11. Hols P., Baulard A., Garmyn D., Delplace B., Hogan S., Delcour J. 1992; Isolation and characterization of genetic expression and secretion signals from Enterococcus faecalis through the use of broad-host-range α-amylase probe vectors. Gene 118:21–30
    [Google Scholar]
  12. Hols P., Ferain T., Garmyn D., Bernard N., Delcour J. 1994; Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for α-amylase and levanase expression. Appl Environ Microbiol 60:1401–1413
    [Google Scholar]
  13. Josson K., Scheirlinck T., Michiels F., Plateeuw C., Stanssens P., Joos H., Dhaese P., Zabeau M., Mahillon J. 1989; Characterization of a Gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. . Plasmid 21:9–20
    [Google Scholar]
  14. Klijn N., Weerkamp A. H., de Vos W. M. 1995; Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 61:2771–2774
    [Google Scholar]
  15. Kok J., van der Vossen J. M. B., M. & Venema G. 1984; Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. . Appl Environ Microbiol 48:726–731
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27:680–685
    [Google Scholar]
  17. Leclerc C., Charbit A., Martineau P., Deriaud E., Hofnung M. 1991; The cellular location of foreign B cell epitope expressed by recombinant bacteria determines its T cell-independent or T cell-dependent characteristics. J Immunol 147:3545–3552
    [Google Scholar]
  18. Link-Amster H., Rochat F., Saudan K. Y., Mignot O., Aeschlimann J. M. 1994; Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10:55–64
    [Google Scholar]
  19. Marteau P., Rambaud J.-C. 1993; Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12:207–220
    [Google Scholar]
  20. Mercenier A., Pouwels P. H., Chassy B. M. 1994; Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. . In Genetics and Biotechnology of Lactic Acid Bacteria pp. 252–293 . Edited by Gasson M. J., de Vos W. M. Glasgow: Blackie Academic & Professional.;
    [Google Scholar]
  21. Muster T., Guinea R., Trkola A., Purtscher M., Klima A., Steindl F., Palese P., Katinger H. 1994; Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by gp41 sequence ELDKWAS. J Virol 68:4031–4034
    [Google Scholar]
  22. Nguyen T. N., Hansson M., Ståhl S., Bächi T., Robert A., Domzig W., Binz H., Uhtén M. 1993; Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. Gene 128:89–94
    [Google Scholar]
  23. Norton P. M., Brown H. W. G., Le Page R. W. F. 1994; The immune response to Lactococcus lactis: implications for its use as vaccine delivery vehicle. FEMS Microbiol Lett 120:249–256
    [Google Scholar]
  24. Oggioni M. R., Manganelli R., Contorni M., Tommasino M., Pozzi G. 1995; Immunization of mice by oral colonization with live recombinant commensal streptococci. Vaccine 13:775–779
    [Google Scholar]
  25. OʹSullivan D. J., Klaenhammer T. R. 1993; Rapid mini-prep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59:2730–2733
    [Google Scholar]
  26. Perdigon G., de Macias M. E. N., Alvarez S., Oliver G., de Ruiz Holgado A. P. 1988; Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. . Immunology 63:17–23
    [Google Scholar]
  27. Perez-Martinez G., Kok J., Venema G., van Dijl J. M., Smith H., Bron S. 1992; Protein export elements from Lactococcus lactis. . Mol Gen Genet 234:401–411
    [Google Scholar]
  28. Posno M., Leer R. J., van Luik K., van Giezen N. M. J., F., Heuvelmans B. C., Lokman P. T. H., M. & Pouwels P. H. 1991; Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828
    [Google Scholar]
  29. Pouwels P. H., Leer R. J. 1993; Genetics of lactobacilli: plasmids and gene expression. Antonie Leeuwenhoek 64:85–107
    [Google Scholar]
  30. Pouwels P. H., Leer R. J., Boersma W. J. A. 1996; The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J Biotechnol 44:183–192
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Samuelson P., Hansson M., Ahlborg N., Andréoni C., Götz F., Bächi T., Nguyen T. N., Binz H., Uhlnén M., Ståhl S. 1995; Cell surface display of recombinant proteins on Staphylococcus carnosus. . J Bacteriol 177:1470–1476
    [Google Scholar]
  33. Saunders C. W., Schmidt B. J., Mallonee R. L., Guyer M. S. 1987; Secretion of human serum albumin from Bacillus subtilis. . J Bacteriol 169:2917–2925
    [Google Scholar]
  34. Schauder B., McCarthy J. E. G. 1989; The role of bases upstream of the Shine–Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: translation and stability of mRNAs in vivo. Gene 78:59–72
    [Google Scholar]
  35. Schneewind O., Fowler A., Faull K. F. 1995; Structure of the cell wall anchor of surface protein in Staphylococcus aureus. . Science 268:103–106
    [Google Scholar]
  36. Schorr J., Knapp B., Hundt E., Küpper H. A., Amann E. 1991; Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine 9:675–681
    [Google Scholar]
  37. Simonen M., Palva I. 1993; Protein secretion in Bacillus species. Microbiol Rev 57:109–137
    [Google Scholar]
  38. Slos P. 1990 Développement de systèmes de transfert de genes et de vecteurs d’expression chez Streptococcus thermophilus PhD thesis Université Louis-Pasteur de Strasbourg;
    [Google Scholar]
  39. Slos P., Bourquin J.-C., Lemoine Y., Mercenier A. 1991; Isolation and characterization of chromosomal promoters of Streptococcus salivarius subsp. thermophilus. . Appl Environ Microbiol 57:1333–1339
    [Google Scholar]
  40. de Smit M. H., van Duin J. 1990; Secondary structure of the ribosome binding site determines translation efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672
    [Google Scholar]
  41. Steidler L., Wells J. M., Raeymaekers A., Vandekerckhove J., Fiers W., Remaut E. 1995; Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. . Appl Environ Microbiol 61:1627–1629
    [Google Scholar]
  42. Taguchi H., Ohta T. 1991; d-Lactate dehydrogenase is a member of the d-isomer-specific 2-hydroxyacid dehydrogenase family: cloning, sequencing and expression in Escherichia coli of the l-lactate dehydrogenase gene of Lactobacillus plantarum. . J Biol Chem 266:12588–12594
    [Google Scholar]
  43. Tinoco I. Jr, Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41
    [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354
    [Google Scholar]
  45. Van Asseldonk M. 1993 Production and secretion of heterologous proteins by Lactococcus lactis PhD thesis Agricultural University of Wageningen;
    [Google Scholar]
  46. Van Asseldonk M., de Vos W. M., Simons G. 1993; Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous α- amylase. Mol Gen Genet 240:428–434
    [Google Scholar]
  47. Wells J. M., Wilson P. W., Norton P. M., Gasson M. J., Le Page R. W. F. 1993a; Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 8:1155–1162
    [Google Scholar]
  48. Wells J. M., Wilson P., W„ Norton P. M., Le Page R. W. F. 1993b; A model system for the investigation of heterologous protein secretion pathways in Lactococcus lactis. . Appl Environ Microbiol 59:3954–3959
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2733
Loading
/content/journal/micro/10.1099/00221287-143-8-2733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error