1887

Abstract

Several halophilic archaea belonging to the genus were isolated from stromatolites from Hamelin Pool, Shark Bay, Western Australia, collected during field trips in 1996 and 2002. This is the first incidence of halophilic archaea being isolated from this environment. Stromatolites are biosedimentary structures that have been formed throughout the earth's evolutionary history and have been preserved in the geological record for over 3 billion years. The stromatolites from Hamelin Pool, Western Australia, are the only known example of extant stromatolites forming in hypersaline coastal environments. Based on their 16S rRNA gene sequences and morphology, the isolates belong to the genus . Strain 100NA1, isolated from stromatolites collected in 2002, was closely related to strain 100A6 that was isolated from the stromatolites collected in 1996, with a DNA–DNA hybridization value of 94±8 %. DNA–DNA hybridization values of strain 100A6 with NRC 16008 and ATCC 49257 were 17±6 and 11±7 %, respectively. The DNA G+C content of strain 100A6 was 60.5 mol% ( ). The main polar lipid was S-DGA-1, a sulphated glycolipid that has been detected in all strains of the genus . Whole-cell protein profiles, enzyme composition and utilization of various carbon sources were distinct from those of all previously characterized species. The recognition of this strain as representing a novel species within the genus is justified, and the name sp. nov. is proposed. The type strain is 100A6 (=JCM 12892=ACM 5227).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64180-0
2006-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1323.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64180-0&mimeType=html&fmt=ahah

References

  1. Arp G., Reimer A., Reitner J. 2001; Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704 [CrossRef]
    [Google Scholar]
  2. Bowman J. P., McCammon S. A., Brown J. L., McMeekin T. A. 1998; Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222 [CrossRef]
    [Google Scholar]
  3. Burns B. P., Goh F., Allen M., Neilan B. A. 2004; Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101 [CrossRef]
    [Google Scholar]
  4. Byerly G. R., Lower D. R., Walsh M. M. 1986; Stromatolites from the 3,300–3,500-Myr Swaziland supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491 [CrossRef]
    [Google Scholar]
  5. DasSarma S., Fleischmann E. M., Rodriguez-Valera F. 1995; Media for halophiles. In Archaea: a Laboratory Manual pp  225–230 Edited by DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  7. Denner E. B. M., McGenity T. J., Busse H.-J., Grant W. D., Wanner G., Stan-Lotter H. 1994; Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780 [CrossRef]
    [Google Scholar]
  8. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Class III. Halobacteria class. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  294–334 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  9. Humble M. W., King A., Phillips I. 1977; API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277 [CrossRef]
    [Google Scholar]
  10. Jackman P. J. H. 1987; Microbial systematics based on electrophoretic whole-cell protein patterns. Methods Microbiol 19:209–225
    [Google Scholar]
  11. Kamekura M. 1993; Lipids of extreme halophiles. In The Biology of Halophilic Bacteria pp  135–161 Edited by Vreeland R. H., Hochstein L. I. Boca Raton, FL: CRC Press;
    [Google Scholar]
  12. Kamekura M. 1998; Diversity of extremely halophilic bacteria. Extremophiles 2:289–295 [CrossRef]
    [Google Scholar]
  13. Kamekura M., Mizuki T., Usami R., Yoshida Y., Horikoshi K., Vreeland R. H. 2004; The potential use of signature bases from 16S rRNA gene sequences to aid the assignment of microbial strains to genera of halobacteria. In Halophilic Microorganisms pp  77–100 Edited by Ventosa A. Berlin: Springer;
    [Google Scholar]
  14. Kocur M., Hodgkiss W. 1973; Taxonomic status of the genus Halococcus Schoop. Int J Syst Bacteriol 23:151–156 [CrossRef]
    [Google Scholar]
  15. Montero C. G., Ventosa A., Rodriguez-Valera F., Kates M., Moldoveanu N., Ruiz-Berraquero F. 1989; Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst Appl Microbiol 12:167–171 [CrossRef]
    [Google Scholar]
  16. Montero C. G., Klenk H. P., Nieto J. J., Ventosa A. 1993; DNA-rRNA hybridization studies on Halococcus saccharolyticus and other halobacteria. FEMS Microbiol Lett 111:69–72 [CrossRef]
    [Google Scholar]
  17. Neilan B. A., Burns B. P., Relman D., Lowe D. R. 2002; Molecular identification of cyanobacteria associated with stromatolites from distinct geographical locations. Astrobiology 2:271–280 [CrossRef]
    [Google Scholar]
  18. Ochsenreiter T., Pfeifer F., Schleper C. 2002; Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274 [CrossRef]
    [Google Scholar]
  19. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  20. Stan-Lotter H., Pfaffenhuemer M., Legat A., Busse H.-J., Radax C., Gruber C. 2002; Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814 [CrossRef]
    [Google Scholar]
  21. Vreeland R. H., Rozenzweig W. D., Powers D. W. 2000; Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900 [CrossRef]
    [Google Scholar]
  22. Vreeland R. H., Straight S., Krammes J., Dougherty K., Rosenzweig W. D., Kamekura M. 2002; Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452 [CrossRef]
    [Google Scholar]
  23. Wais A. C. 1988; Recovery of halophilic archaebacteria from natural environments. FEMS Microbiol Ecol 53:211–216 [CrossRef]
    [Google Scholar]
  24. Walter M. R., Buick R., Dunlop J. S. R. 1980; Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64180-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64180-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error