1887

Abstract

The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Δ mutants do not survive , mutants are avirulent, and both and mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted , and demonstrated that Δ mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both and Δ mutants. Since the mutation of , required for the first step of isoleucine biosynthesis, did not suppress the Δ starvation-cidal defects in either species, the cidal phenotype was not due to -ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in than in , and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced Δ starvation viability, it increased Δ and Δ viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for Δ mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Δ and Δ viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the cidal phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034348-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/929.html?itemId=/content/journal/micro/10.1099/mic.0.034348-0&mimeType=html&fmt=ahah

References

  1. Barclay B. J., Little J. G. 1977; Selection of yeast auxotrophs by thymidylate starvation. J Bacteriol 132:1036–1037
    [Google Scholar]
  2. Boer V. M., Amini S., Botstein D. 2008; Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc Natl Acad Sci U S A 105:6930–6935
    [Google Scholar]
  3. Brauer M. J., Huttenhower C., Airoldi E. M., Rosenstein R., Matese J. C., Gresham D., Boer V. M., Troyanskaya O. G., Botstein D. 2008; Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367
    [Google Scholar]
  4. Bulder C. J. 1964; Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie Van Leeuwenhoek 30:1–9
    [Google Scholar]
  5. Chipman D., Barak Z., Schloss J. V. 1998; Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385401–419
    [Google Scholar]
  6. Crispens C. G. 1975; Section IV. Blood. In Handbook on the Laboratory Mouse pp 93–123 Springfield, IL: Charles C. Thomas;
    [Google Scholar]
  7. Culbertson M. R., Henry S. A. 1975; Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80:23–40
    [Google Scholar]
  8. Cynober L. A. 2002; Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18:761–766
    [Google Scholar]
  9. Daniel J., Dondon L., Danchin A. 1983; 2-Ketobutyrate: a putative alarmone of Escherichia coli. Mol Gen Genet 190:452–458
    [Google Scholar]
  10. Daniel J., Joseph E., Danchin A. 1984; Role of 2-ketobutyrate as an alarmone in E. coli K12: inhibition of adenylate cyclase activity mediated by the phosphoenolpyruvate : glycose phosphotransferase transport system. Mol Gen Genet 193:467–472
    [Google Scholar]
  11. Divol B., Lonvaud-Funel A. 2005; Evidence for viable but nonculturable yeasts in botrytis-affected wine. J Appl Microbiol 99:85–93
    [Google Scholar]
  12. Epelbaum S., Chipman D. M., Barak Z. 1996; Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium. J Bacteriol 178:1187–1196
    [Google Scholar]
  13. Fradin C., Kretschmar M., Nichterlein T., Gaillardin C., d'Enfert C., Hube B. 2003; Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543
    [Google Scholar]
  14. Fradin C., De Groot P., MacCallum D., Schaller M., Klis F., Odds F. C., Hube B. 2005; Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415
    [Google Scholar]
  15. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182
    [Google Scholar]
  16. Goldstein A. L., McCusker J. H. 1999; Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553
    [Google Scholar]
  17. Goldstein A. L., McCusker J. H. 2001; Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics 159:499–513
    [Google Scholar]
  18. Gray J. V., Petsko G. A., Johnston G. C., Ringe D., Singer R. A., Werner-Washburne M. 2004; “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206
    [Google Scholar]
  19. Guldener U., Heck S., Fielder T., Beinhauer J., Hegemann J. H. 1996; A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524
    [Google Scholar]
  20. Henry S. A., Donahue T. F., Culbertson M. R. 1975; Selection of spontaneous mutants by inositol starvation in yeast. Mol Gen Genet 143:5–11
    [Google Scholar]
  21. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272
    [Google Scholar]
  22. Ito-Harashima S., Hartzog P. E., Sinha H., McCusker J. H. 2002; The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency. Genetics 161:1395–1410
    [Google Scholar]
  23. Kell D. B., Kaprelyants A. S., Weichart D. H., Harwood C. R., Barer M. R. 1998; Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73:169–187
    [Google Scholar]
  24. Kingsbury J. M., McCusker J. H. 2008; Threonine biosynthetic genes are essential in Cryptococcus neoformans. Microbiology 154:2767–2775
    [Google Scholar]
  25. Kingsbury J. M., Yang Z., Ganous T. M., Cox G. M., McCusker J. H. 2004a; Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 3 °C and in vivo. Microbiology 150:1547–1558
    [Google Scholar]
  26. Kingsbury J. M., Yang Z., Ganous T. M., Cox G. M., McCusker J. H. 2004b; A novel chimeric spermidine synthase-saccharopine dehydrogenase ( SPE3- LYS9) gene in the human pathogen Cryptococcus neoformans. Eukaryot Cell 3:752–763
    [Google Scholar]
  27. Kingsbury J. M., Goldstein A. L., McCusker J. H. 2006; Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo. Eukaryot Cell 5:816–824
    [Google Scholar]
  28. Kirsch D. R., Whitney R. R. 1991; Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect Immun 59:3297–3300
    [Google Scholar]
  29. Landstein D., Chipman D. M., Arad S. M., Barak Z. 1990; Acetohydroxy acid synthase activity in Chlorella emersonii under auto- and heterotrophic growth conditions. Plant Physiol 94:614–620
    [Google Scholar]
  30. LaRossa R. A., Van Dyk T. K. 1987; Metabolic mayhem caused by 2-ketoacid imbalances. Bioessays 7:125–130
    [Google Scholar]
  31. LaRossa R. A., Van Dyk T. K., Smulski D. R. 1987; Toxic accumulation of α-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol 169:1372–1378
    [Google Scholar]
  32. Liebmann B., Muhleisen T. W., Muller M., Hecht M., Weidner G., Braun A., Brock M., Brakhage A. A. 2004; Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Arch Microbiol 181:378–383
    [Google Scholar]
  33. Lorenz M. C., Bender J. A., Fink G. R. 2004; Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087
    [Google Scholar]
  34. McCusker J. H., Clemons K. V., Stevens D. A., Davis R. W. 1994; Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:1261–1269
    [Google Scholar]
  35. Mills D. A., Johannsen E. A., Cocolin L. 2002; Yeast diversity and persistence in Botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893
    [Google Scholar]
  36. Nazi I., Scott A., Sham A., Rossi L., Williamson P. R., Kronstad J. W., Wright G. D. 2007; Role of homoserine transacetylase as a new target for antifungal agents. Antimicrob Agents Chemother 51:1731–1736
    [Google Scholar]
  37. Nicholas R. O., Berry V., Hunter P. A., Kelly J. A. 1999; The antifungal activity of mupirocin. J Antimicrob Chemother 43:579–582
    [Google Scholar]
  38. Noble S. M., Johnson A. D. 2005; Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4:298–309
    [Google Scholar]
  39. Oliver J. D. 2005; The viable but nonculturable state in bacteria. J Microbiol 43:special issue93–100
    [Google Scholar]
  40. Pascon R. C., Ganous T. M., Kingsbury J. M., Cox G. M., McCusker J. H. 2004; Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology 150:3013–3023
    [Google Scholar]
  41. Reuss O., Vik A., Kolter R., Morschhauser J. 2004; The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127
    [Google Scholar]
  42. Rhodes D., Hogan A. L., Deal L., Jamieson G. C., Haworth P. 1987; Amino acid metabolism of Lemna minor L.: II. Responses to chlorsulfuron. Plant Physiol 84:775–780
    [Google Scholar]
  43. Saldanha A. J., Brauer M. J., Botstein D. 2004; Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15:4089–4104
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  45. Schneper L., Duvel K., Broach J. R. 2004; Sense and sensibility: nutritional response and signal integration in yeast. Curr Opin Microbiol 7:624–630
    [Google Scholar]
  46. Shaner D. L., Singh B. K. 1993; Phytotoxicity of acetohydroxyacid synthase inhibitors is not due to accumulation of 2-ketobutyrate and/or 2-aminobutyrate. Plant Physiol 103:1221–1226
    [Google Scholar]
  47. Sherman F., Fink G. R., Lawrence C. W. 1974 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  48. Tkacz J. S., DiDomenico B. 2001; Antifungals: what's in the pipeline. Curr Opin Microbiol 4:540–545
    [Google Scholar]
  49. Unger M. W., Hartwell L. H. 1976; Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA. Proc Natl Acad Sci U S A 73:1664–1668
    [Google Scholar]
  50. Van Dyk T. K., Smulski D. R., Chang Y. Y. 1987; Pleiotropic effects of poxA regulatory mutations of Escherichia coli and Salmonella typhimurium, mutations conferring sulfometuron methyl and α-ketobutyrate hypersensitivity. J Bacteriol 169:4540–4546
    [Google Scholar]
  51. Wach A., Brachat A., Pohlmann R., Philippsen P. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808
    [Google Scholar]
  52. Warburg O. 1956; On the origin of cancer cells. Science 123:309–314
    [Google Scholar]
  53. Whitcomb C. E. 1999; An introduction to ALS-inhibiting herbicides. Toxicol Ind Health 15:231–239
    [Google Scholar]
  54. Yang Z., Pascon R. C., Alspaugh A., Cox G. M., McCusker J. H. 2002; Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology 148:2617–2625
    [Google Scholar]
  55. Zaman S., Lippman S. I., Zhao X., Broach J. R. 2008; How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81
    [Google Scholar]
  56. Ziegelbauer K. 1998; Decreased accumulation or increased isoleucyl-tRNA synthetase activity confers resistance to the cyclic β-amino acid BAY 10–8888 in Candida albicans and Candida tropicalis. Antimicrob Agents Chemother 42:1581–1586
    [Google Scholar]
  57. Ziegelbauer K., Babczinski P., Schonfeld W. 1998; Molecular mode of action of the antifungal β-amino acid BAY 10–8888. Antimicrob Agents Chemother 42:2197–2205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034348-0
Loading
/content/journal/micro/10.1099/mic.0.034348-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error