1887

Abstract

In lactic acid bacteria (LAB), amino acids and their derivatives may be converted into amine-containing compounds designated biogenic amines, in pathways providing metabolic energy and/or acid resistance to the bacteria. In a previous study, a pathway converting tyrosine to tyramine was detected in and a fragment of a gene possibly involved in the production of another biogenic amine, putrescine, from agmatine, was detected in the same locus. The present study was carried out to determine if actually harbours two biogenic amine-producing pathways in the same locus and to investigate the occurrence of the two gene clusters in other bacteria. Sequencing of the DNA locus in revealed a cluster of six genes that are related to previously reported genes of agmatine deiminase pathways but with marked differences such as two genes encoding putative agmatine deiminases rather than one. Heterologous expression of encoded enzymes confirmed the presence of at least one active agmatine deiminase and one amino acid transporter that efficiently exchanged agmatine and putrescine. It was concluded that the gene cluster encodes a functional and highly specific agmatine deiminase pathway. Screening of a collection of 197 LAB disclosed the same genes in 36 strains from six different species, and almost all the positive bacteria also contained the tyrosine catabolic pathway genes in the same locus. These results support the hypothesis that the agmatine deiminase and tyrosine catabolic pathways belong to a genomic region that provides acid resistance and that is exchanged horizontally as a whole between LAB.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006320-0
2007-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2221.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006320-0&mimeType=html&fmt=ahah

References

  1. Alberto M. R., Arena M. E., Manca de Nadra M. C. 2007; Putrescine production from agmatine by Lactobacillus hilgardii : effect of phenolic compounds. Food Control 18:898–903 [CrossRef]
    [Google Scholar]
  2. Ansanay V., Dequin S., Blondin B., Barre P. 1993; Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis. FEBS Lett 332:74–80 [CrossRef]
    [Google Scholar]
  3. Boyde T. R., Rahmatullah M. 1980; Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 107:424–431 [CrossRef]
    [Google Scholar]
  4. Coton M., Coton E., Lucas P., Lonvaud-Funel A. 2004; Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol 21:125–130 [CrossRef]
    [Google Scholar]
  5. Cotter P. D., Hill C. 2003; Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453 [CrossRef]
    [Google Scholar]
  6. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135 [CrossRef]
    [Google Scholar]
  7. de Ruyter P. G., Kuipers O. P., De Vos W. M. 1996; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667
    [Google Scholar]
  8. Driessen A. J., Smid E. J., Konings W. N. 1988; Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter. J Bacteriol 170:4522–4527
    [Google Scholar]
  9. Fernández M., Zúñiga M. 2006; Amino acid catabolic pathways in lactic acid bacteria. Crit Rev Microbiol 32:155–183 [CrossRef]
    [Google Scholar]
  10. Griswold A. R., Chen Y.-Y. M., Burne R. A. 2004; Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol 186:1902–1904 [CrossRef]
    [Google Scholar]
  11. Griswold A. R., Chen Y.-Y. M., Burne R. A. 2006; Regulation and physiological significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 188:834–841 [CrossRef]
    [Google Scholar]
  12. Kunji E. R. S., Slotboom D. J., Poolman B. 2003; Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 161097–108 [CrossRef]
    [Google Scholar]
  13. Labarre C., Divies C., Guzzo J. 1996; Genetic organization of the mle locus and identification of a mleR -like gene from Leuconostoc oenos. Appl Environ Microbiol 62:4493–4498
    [Google Scholar]
  14. Llácer J. L., Polo L. M., Tavarez S., Alarcon B., Hilario R., Rubio V. 2006; The gene cluster for agmatine catabolism of Enterococcus faecalis . Studies of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction. J Bacteriol 189:1254–1265
    [Google Scholar]
  15. Lolkema J. S., Poolman B., Konings W. N. 1996; Secondary transporters and metabolic energy generation in bacteria. In Handbook of Biophysics, pp 229–260 Edited by Konings W. N., Kabac H. R., Lolkema J. S. Amsterdam: Elsevier;
    [Google Scholar]
  16. Lu X., Li L., Wu R., Feng X., Li Z., Yang H., Wang C., Guo H., Galkin A. other authors 2006; Kinetic analysis of Pseudomonas aeruginosa arginine deiminase mutants and alternate substrates provides insight into structural determinants of function. Biochemistry 45:1162–1172 [CrossRef]
    [Google Scholar]
  17. Lucas P. M., Lonvaud-Funel A. 2002; Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiol Lett 211:85–89 [CrossRef]
    [Google Scholar]
  18. Lucas P. M., Landete J., Coton M., Coton E., Lonvaud-Funel A. 2003; The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett 229:65–71 [CrossRef]
    [Google Scholar]
  19. Lucas P. M., Wolken W. A., Claisse O., Lolkema J. S., Lonvaud-Funel A. 2005; Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl Environ Microbiol 71:1417–1424 [CrossRef]
    [Google Scholar]
  20. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V. other authors 2006; Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616 [CrossRef]
    [Google Scholar]
  21. Marcobal A., Moreno-Arribas M. V., Munoz R., de las Rivas B. 2006; Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Appl Environ Microbiol 72:7954–7958 [CrossRef]
    [Google Scholar]
  22. Molenaar D., Bosscher J. S., Ten Brink B., Driessen A. J. M., Konings W. N. 1993; Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175:2864–2870
    [Google Scholar]
  23. Nakada Y., Itoh Y. 2003; Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N -carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology 149:707–714 [CrossRef]
    [Google Scholar]
  24. Nakada Y., Jiang Y., Nishijyo T., Itoh Y., Lu C.-D. 2001; Molecular characterization and regulation of the agu BA operon, responsible for agmatine utilisation in Pseudomonas aeruginosa. J Bacteriol 183:6517–6524 [CrossRef]
    [Google Scholar]
  25. Naumoff D. G., Xu Y., Glansdorff N., Labedan B. 2004a; Retrieving sequences of enzymes experimentally characterized but erroneously annotated: the case of the putrescine carbamoyltransferase. BMC Genomics 5:52 [CrossRef]
    [Google Scholar]
  26. Naumoff D. G., Xu Y., Stalton V., Glansdorff N., Labedan B. 2004b; The difficulty of annotating genes: the case of putrescine carbamoyltransferase. Microbiology 150:3908–3911 [CrossRef]
    [Google Scholar]
  27. Pereira-Monteiro M. J., Bertrand A. 1994; Validation d'une méthode de dosage. Application à l'analyse des amines biogènes du vin. Bull O I V 765:916–962
    [Google Scholar]
  28. Silla Santos M. H. 1996; Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231 [CrossRef]
    [Google Scholar]
  29. Sobczak I., Lolkema J. S. 2005; The 2-hydroxycarboxylate transporter family. Microbiol Mol Biol Rev 69:665–695 [CrossRef]
    [Google Scholar]
  30. Sorensen K. I., Hove-Jensen B. 1996; Ribose catabolism of Escherichia coli : characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol 178:1003–1011
    [Google Scholar]
  31. Stratton J. E., Hutkins R. W., Taylor S. L. 1991; Biogenic amines in cheese and other fermented foods: a review. J Food Prot 54:460–470
    [Google Scholar]
  32. Tabor C. W., Tabor H. 1985; Polyamines in microorganisms. Microbiol Rev 49:81–99
    [Google Scholar]
  33. Ten Brink B., Damink C., Joosten H. M. L. J., Huis in't Veld J. H. J. 1990; Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:73–84 [CrossRef]
    [Google Scholar]
  34. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  35. Wolken W. A., Lucas P. M., Lonvaud-Funel A., Lolkema J. S. 2006; The mechanism of the tyrosine transporter TyrP supports a proton motive decarboxylation pathway in Lactobacillus brevis. J Bacteriol 188:2198–2206 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006320-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006320-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error