1887

Abstract

This study used atomic force microscopy (AFM) to probe the local cell-surface interactions associated with the glucan polymers of , the macromolecules most commonly attributed to the virulence of this microbe. force spectroscopy was used to quantitatively probe and correlate cell-surface adhesion and dynamics with UA140 wild-type and five glucosyltransferase mutants. Adhesion between the tooth surface and is largely mediated by glucan production from sucrose via three glucosyltransferases (Gtfs; GtfB, GtfC and GtfD). To monitor the contribution of these particular Gtfs, isogenic mutants of were constructed by specific gene inactivation and compared to the wild-type under sucrose and non-sucrose conditions. We report direct measurement of the mechanical properties associated with glucan macromolecules demonstrating that the local adhesion strength increases in a time-dependent process, with a decrease in the average number of rupture events. This finding suggests that attaches mainly through glucans to surfaces in the presence of sucrose. In addition, a possible role of the Gtf proteins in sucrose-independent attachment is supported by the decreased adhesion properties of the GtfBCD mutant compared to the wild-type.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007625-0
2007-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3124.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007625-0&mimeType=html&fmt=ahah

References

  1. Banas J. A., Vickerman M. M. 2003; Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14:89–99
    [Google Scholar]
  2. Binnig G., Quate C. F., Gerber C. 1986; Atomic force microscope. Phys Rev Lett 56:930–933
    [Google Scholar]
  3. Bowen W. H., Schilling K., Giertsen E., Pearson S., Lee S. F., Bleiweis A., Beeman D. 1991; Role of a cell surface-associated protein in adherence and dental caries. Infect Immun 59:4606–4609
    [Google Scholar]
  4. Cerning J. 1990; Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130
    [Google Scholar]
  5. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  6. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
    [Google Scholar]
  7. Cross S. E., Kreth J., Zhu L., Qi F. X., Pelling A. E., Shi W. Y., Gimzewski J. K. 2006; Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology 17:S1–S7
    [Google Scholar]
  8. Fisher T. E., Marszalek P. E., Fernandez J. M. 2000; Stretching single molecules into novel conformations using the atomic force microscope. Nat Struct Biol 7:719–724
    [Google Scholar]
  9. Fukushima K., Ikeda T., Kuramitsu H. K. 1992; Expression of Streptococcus mutans gtf genes in Streptococcus milleri. Infect Immun 60:2815–2822
    [Google Scholar]
  10. Ghuysen J. M., Hackenbeck R. 1994 Bacterial Cell Wall Amsterdam: Elsevier;
  11. Hamada S., Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384
    [Google Scholar]
  12. Kasas S., Ikai A. 1995; A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68:1678–1680
    [Google Scholar]
  13. Kreth J., Hagerman E., Tam K., Merritt J., Wong D. T., Wu B. M., Myung N. V., Shi W., Qi F. 2004; Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy. Biofilms 1:277–284
    [Google Scholar]
  14. Kreth J., Merritt J., Shi W., Qi F. 2005; Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404
    [Google Scholar]
  15. Kuramitsu H. K. 1993; Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4:159–176
    [Google Scholar]
  16. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  17. Matsumoto M., Fujita K., Ooshima T. 2006; Binding of glucan-binding protein C to GTFD-synthesized soluble glucan in sucrose-dependent adhesion of Streptococcus mutans. Oral Microbiol Immunol 21:42–46
    [Google Scholar]
  18. Monchois V., Willemot R. M., Monsan P. 1999; Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23:131–151
    [Google Scholar]
  19. Morris S., Hanna S., Miles M. J. 2004; The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15:1296–1301
    [Google Scholar]
  20. O'Toole G., Kaplan H. B., Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79
    [Google Scholar]
  21. Ooshima T., Matsumura M., Hoshino T., Kawabata S., Sobue S., Fujiwara T. 2001; Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans. J Dent Res 80:1672–1677
    [Google Scholar]
  22. Pelling A. E., Sehati S., Gralla E. B., Valentine J. S., Gimzewski J. K. 2004; Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150
    [Google Scholar]
  23. Pelling A. E., Li Y., Shi W., Gimzewski J. K. 2005; Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci U S A 102:6484–6489
    [Google Scholar]
  24. Qi F., Chen P., Caufield P. W. 2001; The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21
    [Google Scholar]
  25. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. 1997; Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112
    [Google Scholar]
  26. Russell M. W., Harrington D. J., Russell R. R. 1995; Identity of Streptococcus mutans surface protein antigen III and wall-associated protein antigen A. Infect Immun 63:733–735
    [Google Scholar]
  27. Ryan V., Hart T. R., Schiller R. 1980; Laser light scattering measurement of dextran-induced Streptococcus mutans aggregation. Biophys J 31:113–125
    [Google Scholar]
  28. Schär-Zammaretti P., Ubbink J. 2003a; Imaging of lactic acid bacteria with AFM--elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97:199–208
    [Google Scholar]
  29. Schär-Zammaretti P., Ubbink J. 2003b; The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 85:4076–4092
    [Google Scholar]
  30. Sen S., Subramanian S., Discher D. E. 2005; Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89:3203–3213
    [Google Scholar]
  31. Smith B. L., Schaffer T. E., Viani M., Thompson J. B., Frederick N. A., Kindt J., Belcher A., Stucky G. D., Morse D. E., Hansma P. K. 1999; Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763
    [Google Scholar]
  32. Tsumori H., Kuramitsu H. 1997; The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol 12:274–280
    [Google Scholar]
  33. van der Aa B. C., Michel R. M., Asther M., Zamora M. T., Rouxhet P. G., Dufrene Y. F. 2001; Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17:3116–3119
    [Google Scholar]
  34. van der Mei H. C., Busscher H. J., Bos R., de Vries J., Boonaert C. J., Dufrene Y. F. 2000; Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys J 78:2668–2674
    [Google Scholar]
  35. van Hoogmoed C. G., Dijkstra R. J. B., van der Mei H. C., Busscher H. J. 2006; Influence of biosurfactant on interactive forces between mutans streptococci and enamel measured by atomic force microscopy. J Dent Res 85:54–58
    [Google Scholar]
  36. Yamashita Y., Bowen W. H., Burne R. A., Kuramitsu H. K. 1993; Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817
    [Google Scholar]
  37. Zhu L., Kreth J., Cross S. E., Gimzewski J. K., Shi W. Y., Qi F. X. 2006; Functional characterization of cell-wall-associated protein WapA in Streptococcus mutans. Microbiology 152:2395–2404
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007625-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007625-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error