1887

Abstract

An unstable type of green fluorescent protein (Gfp) tagged with a C-terminal extension, which is a target for tail-specific protease, was used as a reporter gene in . To analyse Gfp expression in legionellae, transcriptional fusions of unstable with the specific (ntraellular ultiplication) promoters (P, P and P) were constructed. Infection studies using J774.1 macrophages as the host, and strains carrying P-, P- and P- fusions, indicated that the , and genes could be expressed intracellularly. Expression of , and genes in infected cells was examined by flow cytometry. Furthermore, fluorescent intracellular legionellae were detected directly by confocal microscopy. Real-time quantitative RT-PCR revealed the differences in the gene expression of , and that of and , during infection. Expression of was high in the late stage of infection, while that of and was high in the early phase only. We show that unstable is a useful reporter gene whose expression in legionellae can be followed in real-time, and that it allows analysis of promoter activities in legionellae and monitoring of the infection process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013144-0
2008-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1015.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013144-0&mimeType=html&fmt=ahah

References

  1. Abu Kwaik Y., Gao L. Y., Stone B. J., Venkataraman C., Harb O. S. 1998; Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl Environ Microbiol 64:3127–3133
    [Google Scholar]
  2. Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S. 1998; New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246
    [Google Scholar]
  3. Andrews H. L., Vogel J. P., Isberg R. R. 1998; Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect Immun 66:950–958
    [Google Scholar]
  4. Bardill J. P., Miller J. L., Vogel J. P. 2005; IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 56:90–103
    [Google Scholar]
  5. Blokpoel M. C., O'Toole R., Smeulders M. J., Williams H. D. 2003; Development and application of unstable GFP variants to kinetic studies of mycobacterial gene expression. J Microbiol Methods 54:203–211
    [Google Scholar]
  6. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. 1994; Green fluorescent protein as a marker for gene expression. Science 263:802–805
    [Google Scholar]
  7. Chien M., Morozova I., Shi S., Sheng H., Chen J., Gomez S. M., Asamani G., Hill K., Nuara J. other authors 2004; The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968
    [Google Scholar]
  8. Corish P., Tyler-Smith C. 1999; Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040
    [Google Scholar]
  9. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP. Gene 173:33–38
    [Google Scholar]
  10. Dumenil G., Montminy T. P., Tang M., Isberg R. R. 2004; IcmR-regulated membrane insertion and efflux by the Legionella pneumophila IcmQ protein. J Biol Chem 279:4686–4695
    [Google Scholar]
  11. Feldman M., Zusman T., Hagag S., Segal G. 2005; Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci U S A 102:12206–12211
    [Google Scholar]
  12. Horwitz M. A. 1987; Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J Exp Med 166:1310–1328
    [Google Scholar]
  13. Horwitz M. A., Silverstein S. C. 1983; Intracellular multiplication of Legionnaires' disease bacteria ( Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest 71:15–26
    [Google Scholar]
  14. Keiler K. C., Sauer R. T. 1996; Sequence determinants of C-terminal substrate recognition by the Tsp protease. J Biol Chem 271:2589–2593
    [Google Scholar]
  15. Marra A., Shuman H. A. 1989; Isolation of a Legionella pneumophila restriction mutant with increased ability to act as a recipient in heterospecific matings. J Bacteriol 171:2238–2240
    [Google Scholar]
  16. Marra A., Blander S. J., Horwitz M. A., Shuman H. A. 1992; Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 89:9607–9611
    [Google Scholar]
  17. Molmeret M., Alli O. A., Radulic M., Susa M., Doric M., Kwaik Y. A. 2002; The C-terminus of IcmT is essential for pore formation and for intracellular trafficking of Legionella pneumophila within Acanthamoeba polyphaga. Mol Microbiol 43:1139–1150
    [Google Scholar]
  18. Muto A., Ushida C., Himeno H. 1998; A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci 23:25–29
    [Google Scholar]
  19. Nagai H., Kagan J. C., Zhu X., Kahn R. A., Roy C. R. 2002; A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682
    [Google Scholar]
  20. Ninio S., Zuckman-Cholon D. M., Cambronne E. D., Roy C. R. 2005; The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol Microbiol 55:912–926
    [Google Scholar]
  21. Segal G., Shuman H. A. 1997; Characterization of a new region required for macrophage killing by Legionella pneumophila. Infect Immun 65:5057–5066
    [Google Scholar]
  22. Segal G., Shuman H. A. 1998; How is the intracellular fate of the Legionella pneumophila phagosome determined?. Trends Microbiol 6:253–255
    [Google Scholar]
  23. Segal G., Shuman H. A. 1999; Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67:2117–2124
    [Google Scholar]
  24. Sexton J. A., Miller J. L., Yoneda A., Kehl-Fie T. E., Vogel J. P. 2004; Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72:5983–5992
    [Google Scholar]
  25. Southward C. M., Surette M. G. 2002; The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol 45:1191–1196
    [Google Scholar]
  26. Vincent C. D., Vogel J. P. 2006; The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol 61:596–613
    [Google Scholar]
  27. Vogel J. P., Andrews H. L., Wong S. K., Isberg R. R. 1998; Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876
    [Google Scholar]
  28. Wai S. N., Mizunoe Y., Takade A., Kawabata S. I., Yoshida S. I. 1998; Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64:3648–3655
    [Google Scholar]
  29. Wang S., Hazelrigg T. 1994; Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369:400–403
    [Google Scholar]
  30. Zamboni D. S., McGrath S., Rabinovitch M., Roy C. R. 2003; Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 49:965–976
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013144-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013144-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error