1887

Abstract

is an opportunistic pathogen causing serious infections in patients with cystic fibrosis. The widespread distribution of this bacterium in the environment suggests that it must adapt to stress to be able to survive. We identified in K56-2 a gene predicted to encode RpoE, the extra-cytoplasmic stress response regulator. The gene is the first gene of a predicted operon encoding proteins homologous to RseA, RseB, MucD and a protein of unknown function. The genomic organization and the co-transcription of these genes were confirmed by PCR and RT-PCR. The and genes were mutated, giving rise to RSF24 and RSF25, respectively. While mutant RSF24 did not demonstrate any growth defects under the conditions tested, RSF25 was compromised for growth under temperature (44 °C) and osmotic stress (426 mM NaCl). Expression of RpoE could complement the osmotic growth defect but exacerbated temperature sensitivity in both RSF25 and wild-type K56-2. Inactivation of altered the bacterial cell surface, as indicated by increased binding of the fluorescent dye calcofluor white and by an altered outer-membrane protein profile. These cell surface changes were restored by complementation with a plasmid encoding . Macrophage infections in which bacterial colocalization with fluorescent dextran was examined demonstrated that the mutant could not delay the fusion of containing vacuoles with lysosomes, in contrast to the parental strain K56-2. These data show that is required for bacterial growth under certain stress conditions and for the ability of intracellular bacteria to delay phagolysosomal fusion in macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013714-0
2008-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/643.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013714-0&mimeType=html&fmt=ahah

References

  1. Alba B. M., Leeds J. A., Onufryk C., Lu C. Z., Gross C. A. 2002; DegS and YaeL participate sequentially in the cleavage of RseA to activate the σ E-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168
    [Google Scholar]
  2. Boucher J. C., Martinez-Salazar J., Schurr M. J., Mudd M. H., Yu H., Deretic V. 1996; Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 178:511–523
    [Google Scholar]
  3. Brisse S., Cordevant C., Vandamme P., Bidet P., Loukil C., Chabanon G., Lange M., Bingen E. 2004; Species distribution and ribotype diversity of Burkholderia cepacia complex isolates from French patients with cystic fibrosis. J Clin Microbiol 42:4824–4827
    [Google Scholar]
  4. Carlone G. M., Thomas M. L., Rumschlag H. S., Sottnek F. O. 1986; Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol 24:330–332
    [Google Scholar]
  5. Cezairliyan B. O., Sauer R. T. 2007; Inhibition of regulated proteolysis by RseB. Proc Natl Acad Sci U S A 104:3771–3776
    [Google Scholar]
  6. Chaba R., Grigorova I. L., Flynn J. M., Baker T. A., Gross C. A. 2007; Design principles of the proteolytic cascade governing the σ E-mediated envelope stress response in Escherichia coli : keys to graded, buffered, and rapid signal transduction. Genes Dev 21:124–136
    [Google Scholar]
  7. Clausen T., Southan C., Ehrmann M. 2002; The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–455
    [Google Scholar]
  8. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729
    [Google Scholar]
  9. Coenye T., Vandamme P., LiPuma J. J., Govan J. R., Mahenthiralingam E. 2003; Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol 41:2797–2798
    [Google Scholar]
  10. Cohen S. N., Chang A. C., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114
    [Google Scholar]
  11. Courtney J. M., Dunbar K. E., McDowell A., Moore J. E., Warke T. J., Stevenson M., Elborn J. S. 2004; Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3:93–98
    [Google Scholar]
  12. Craig J. E., Nobbs A., High N. J. 2002; The extracytoplasmic sigma factor, σ E, is required for intracellular survival of nontypeable Haemophilus influenzae in J774 macrophages. Infect Immun 70:708–715
    [Google Scholar]
  13. Dartigalongue C., Missiakas D., Raina S. 2001; Characterization of the Escherichia coli σ E regulon. J Biol Chem 276:20866–20875
    [Google Scholar]
  14. De Las Peñas A., Connolly L., Gross C. A. 1997a; The σ E-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σ E . Mol Microbiol 24:373–385
    [Google Scholar]
  15. De Las Peñas A., Connolly L., Gross C. A. 1997b; σ E is an essential sigma factor in Escherichia coli . J Bacteriol 179:6862–6864
    [Google Scholar]
  16. Devescovi G., Venturi V. 2006; The Burkholderia cepacia rpoE gene is not involved in exopolysaccharide production and onion pathogenicity. Can J Microbiol 52:260–265
    [Google Scholar]
  17. Eissenberg L. G., Schlesinger P. H., Goldman W. E. 1988; Phagosome–lysosome fusion in P388D1 macrophages infected with Histoplasma capsulatum . J Leukoc Biol 43:483–491
    [Google Scholar]
  18. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  19. Filutowicz M., Rakowski S. A. 1998; Regulatory implications of protein assemblies at the γ origin of plasmid R6K – a review. Gene 223:195–204
    [Google Scholar]
  20. Flannagan R. S., Aubert D., Kooi C., Sokol P. A., Valvano M. A. 2007; Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo . Infect Immun 75:1679–1689
    [Google Scholar]
  21. Flynn J. M., Levchenko I., Sauer R. T., Baker T. A. 2004; Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18:2292–2301
    [Google Scholar]
  22. Govan J. R., Brown P. H., Maddison J., Doherty C. J., Nelson J. W., Dodd M., Greening A. P., Webb A. K. 1993; Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342:15–19
    [Google Scholar]
  23. Humphreys S., Stevenson A., Bacon A., Weinhardt A. B., Roberts M. 1999; The alternative sigma factor, σ E, is critically important for the virulence of Salmonella typhimurium . Infect Immun 67:1560–1568
    [Google Scholar]
  24. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210
    [Google Scholar]
  25. Jones A. M., Dodd M. E., Govan J. R., Barcus V., Doherty C. J., Morris J., Webb A. K. 2004; Burkholderia cenocepacia and Burkholderia multivoran s: influence on survival in cystic fibrosis. Thorax 59:948–951
    [Google Scholar]
  26. Kanehara K., Ito K., Akiyama Y. 2002; YaeL (EcfE) activates the σ E pathway of stress response through a site-2 cleavage of anti- σ E, RseA. Genes Dev 16:2147–2155
    [Google Scholar]
  27. Kaufusi P. H., Forsberg L. S., Tittabutr P., Borthakur D. 2004; Regulation of exopolysaccharide synthesis in Rhizobium sp. strain TAL1145 involves an alternative sigma factor gene, rpoH2 . Microbiology 150:3473–3482
    [Google Scholar]
  28. Keith K. E., Valvano M. A. 2007; Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia . Infect Immun 75:2451–2460
    [Google Scholar]
  29. Korbsrisate S., Vanaporn M., Kerdsuk P., Kespichayawattana W., Vattanaviboon P., Kiatpapan P., Lertmemongkolchai G. 2005; The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiol Lett 252:243–249
    [Google Scholar]
  30. Lamothe J., Huynh K. K., Grinstein S., Valvano M. A. 2007; Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9:40–53
    [Google Scholar]
  31. Le Rudulier D., Bouillard L. 1983; Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae . Appl Environ Microbiol 46:152–159
    [Google Scholar]
  32. Lefebre M. D., Valvano M. A. 2002; Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl Environ Microbiol 68:5956–5964
    [Google Scholar]
  33. Lipinska B., Sharma S., Georgopoulos C. 1988; Sequence analysis and regulation of the htrA gene of Escherichia coli : a σ 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067
    [Google Scholar]
  34. LiPuma J. J. 2005; Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 11:528–533
    [Google Scholar]
  35. LiPuma J. J., Dasen S. E., Nielson D. W., Stern R. C., Stull T. L. 1990; Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 336:1094–1096
    [Google Scholar]
  36. Mahenthiralingam E., Vandamme P. 2005; Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217
    [Google Scholar]
  37. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913
    [Google Scholar]
  38. Maloney K. E., Valvano M. A. 2006; The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect Immun 74:5477–5486
    [Google Scholar]
  39. Manno G., Dalmastri C., Tabacchioni S., Vandamme P., Lorini R., Minicucci L., Romano L., Giannattasio A., Chiarini L., Bevivino A. 2004; Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian cystic fibrosis center. J Clin Microbiol 42:1491–1497
    [Google Scholar]
  40. Martinez-Salazar J. M., Moreno S., Najera R., Boucher J. C., Espin G., Soberon-Chavez G., Deretic V. 1996; Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178:1800–1808
    [Google Scholar]
  41. Mathur J., Davis B. M., Waldor M. K. 2007; Antimicrobial peptides activate the V ibrio cholerae σ E regulon through an OmpU-dependent signalling pathway. Mol Microbiol 63:848–858
    [Google Scholar]
  42. McBroom A. J., Kuehn M. J. 2007; Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558
    [Google Scholar]
  43. Menard A., Estrada de Los Santos P., Graindorge A., Cournoyer B. 2007; Architecture of Burkholderia cepacia complex sigma 70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability. BMC Genomics 8:308 Epub ahead of print
    [Google Scholar]
  44. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583
    [Google Scholar]
  45. Missiakas D., Raina S. 1998; The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066
    [Google Scholar]
  46. Missiakas D., Mayer M. P., Lemaire M., Georgopoulos C., Raina S. 1997; Modulation of the Escherichia coli σ E (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24:355–371
    [Google Scholar]
  47. Ortega X., Hunt T. A., Loutet S., Vinion-Dubiel A. D., Datta A., Choudhury B., Goldberg J. B., Carlson R., Valvano M. A. 2005; Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187:1324–1333
    [Google Scholar]
  48. Raina S., Missiakas D., Georgopoulos C. 1995; The rpoE gene encoding the σ E ( σ 24) heat shock sigma factor of Escherichia coli . EMBO J 14:1043–1055
    [Google Scholar]
  49. Reik R., Spilker T., Lipuma J. J. 2005; Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928
    [Google Scholar]
  50. Rezuchova B., Miticka H., Homerova D., Roberts M., Kormanec J. 2003; New members of the Escherichia coli σ E regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1–7
    [Google Scholar]
  51. Richardson W. P., Sadoff J. C. 1977; Production of a capsule of Neisseria gonorrhoeae . Infect Immun 15:663–664
    [Google Scholar]
  52. Rodriguez N. E., Gaur U., Wilson M. E. 2006; Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell Microbiol 8:1106–1120
    [Google Scholar]
  53. Saini L. S., Galsworthy S. B., John M. A., Valvano M. A. 1999; Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145:3465–3475
    [Google Scholar]
  54. Sambrook J., Fritsch E. F., Maniatis T. 1990 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  55. Smith D. L., Gumery L. B., Smith E. G., Stableforth D. E., Kaufmann M. E., Pitt T. L. 1993; Epidemic of Pseudomonas cepacia in an adult cystic fibrosis unit: evidence of person-to-person transmission. J Clin Microbiol 31:3017–3022
    [Google Scholar]
  56. Speert D. P., Henry D., Vandamme P., Corey M., Mahenthiralingam E. 2002; Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8:181–187
    [Google Scholar]
  57. Thomassen M. J., Demko C. A., Klinger J. D., Stern R. C. 1985; Pseudomonas cepacia colonization among patients with cystic fibrosis. A new opportunist. Am Rev Respir Dis 131:791–796
    [Google Scholar]
  58. Walsh N. P., Alba B. M., Bose B., Gross C. A., Sauer R. T. 2003; OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71
    [Google Scholar]
  59. Wiater L. A., Dunn K., Maxfield F. R., Shuman H. A. 1998; Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila . Infect Immun 66:4450–4460
    [Google Scholar]
  60. Wood P. J., Fulcher R. G. 1983; Dye interactions. A basis for specific detection and histochemistry of polysaccharides. J Histochem Cytochem 31:823–826
    [Google Scholar]
  61. Yu H., Schurr M. J., Deretic V. 1995; Functional equivalence of Escherichia coli σ E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa . J Bacteriol 177:3259–3268
    [Google Scholar]
  62. Zhou J., Chen Y., Tabibi S., Alba L., Garber E., Saiman L. 2007; Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 51:1085–1088
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013714-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013714-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error