1887

Abstract

The genetic polymorphism of and , two species that cause Lyme borreliosis, was estimated by sequence typing of four loci: the intergenic spacer (IGS) and the outer-membrane-protein gene on the chromosome, and the outer-membrane-protein genes and on plasmids. The major sources of DNA for PCR amplification and sequencing were samples of the tick vector , collected at a field site in an endemic region of the north-eastern United States, and the vector , collected at a similar site in southern Sweden. The sequences were compared with those of reference strains and skin biopsy isolates, as well as database sequences. For , 10–13 alleles for each of the 4 loci, and a total of 9 distinct clonal lineages with linkage of all 4 loci, were found. For , 2 loci, and IGS, were examined, and 11 IGS genotypes, 12 alleles, and a total of 9 linkage groups were identified. The genetic variants of and among samples from the field sites accounted for the greater part of the genetic diversity previously reported from larger areas of the north-eastern United States and central and northern Europe. Although alleles of both species had higher nucleotide diversity than other loci, the locus showed evidence of intragenic recombination and was unsuitable for phylogenetic inference. In contrast, there was no detectable recombination at the IGS locus of . Moreover, beyond the signature nucleotides that specified 10 IGS genotypes, there were additional nucleotide polymorphisms that defined a total of 24 subtypes. Maximum-likelihood and parsimony cladograms of aligned IGS sequences revealed the subtype sequences to be terminal branches of clades, and the existence of at least three monophyletic lineages within . It is concluded that and have greater genetic diversity than had previously been estimated, and that the IGS locus alone is sufficient for strain typing and phylogenetic studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26944-0
2004-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501741.html?itemId=/content/journal/micro/10.1099/mic.0.26944-0&mimeType=html&fmt=ahah

References

  1. Anderson J. F., Magnarelli L. A. 1992; Epizootiology of Lyme disease and methods of cultivating Borrelia burgdorferi. Ann N Y Acad Sci 653:52–63 [CrossRef]
    [Google Scholar]
  2. Anderson J. F., Johnson R. C., Magnarelli L. A., Hyde F. W. 1986; Involvement of birds in the epidemiology of the Lyme disease agent Borrelia burgdorferi. Infect Immun 51:394–396
    [Google Scholar]
  3. Åsbrink E., Hovmark A. 1985; The spirochetal etiology of erythema chronicum migrans Afzelius. Acta Pathol Microbiol Immunol Scand Sect B 93:161–163
    [Google Scholar]
  4. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525
    [Google Scholar]
  5. Barbour A. G., Fish D. 1993; The biological and social phenomenon of Lyme disease. Science 260:1610–1616 [CrossRef]
    [Google Scholar]
  6. Barbour A. G., Schrumpf M. E. 1986; Polymorphisms of major surface proteins of Borrelia burgdorferi. Zentbl Bakteriol Mikrobiol Hyg [A] 263:83–91
    [Google Scholar]
  7. Barbour A. G., Burgdorfer W., Hayes S. F., Peter O., Aeschlimann A. 1983; Isolation of a cultivable spirochete from Ixodes ricinus ticks of Switzerland. Curr Microbiol 8:123–126 [CrossRef]
    [Google Scholar]
  8. Barbour A. G., Heiland R. A., Howe T. R. 1985; Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates. J Infect Dis 152:478–484 [CrossRef]
    [Google Scholar]
  9. Barbour A. G., Maupin G. O., Teltow G. J., Carter C. J., Piesman J. 1996; Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J Infect Dis 173:403–409 [CrossRef]
    [Google Scholar]
  10. Barthold S. W., Moody K. D., Terwilliger G. A., Jacoby R. O., Steere A. C. 1988; An animal model for Lyme arthritis. Ann N Y Acad Sci 539:264–273 [CrossRef]
    [Google Scholar]
  11. Beati L., Keirans J. E. 2001; Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. J Parasitol 87:32–48 [CrossRef]
    [Google Scholar]
  12. Berger B. W., Kaplan M. H., Rothenberg I. R., Barbour A. G. 1985; Isolation and characterization of the Lyme disease spirochete from the skin of patients with erythema chronicum migrans. J Am Acad Dermatol 13:444–449 [CrossRef]
    [Google Scholar]
  13. Berglund J., Eitrem R., Ornstein K.7 other authors 1995; An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 333:1319–1327 [CrossRef]
    [Google Scholar]
  14. Bunikis J., Luke C. J., Bunikiene E., Bergstrom S., Barbour A. G. 1998; A surface-exposed region of a novel outer membrane protein (P66) of Borrelia spp. is variable in size and sequence. J Bacteriol 180:1618–1623
    [Google Scholar]
  15. Busch U., Hizo-Teufel C., Boehmer R., Fingerle V., Nitschko H., Wilske B., Preac-Mursic V. 1996a; Three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto,B. afzelii, and B. garinii) identified from cerebrospinal fluid isolates by pulsed-field gel electrophoresis and PCR. J Clin Microbiol 34:1072–1078
    [Google Scholar]
  16. Busch U., Hizo-Teufel C., Bohmer R., Fingerle V., Rossler D., Wilske B., Preac-Mursic V. 1996b; Borrelia burgdorferi sensu lato strains isolated from cutaneous Lyme borreliosis biopsies differentiated by pulsed-field gel electrophoresis. Scand J Infect Dis 28:583–589 [CrossRef]
    [Google Scholar]
  17. C. D. C 1997; Lyme disease – United States, 1996. Morb Mortal Wkly Rep 46:531–535
    [Google Scholar]
  18. Ding W., Huang X., Yang X., Dunn J. J., Luft B. J., Koide S., Lawson C. L. 2000; Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA. J Mol Biol 302:1153–1164 [CrossRef]
    [Google Scholar]
  19. Dressler F., Whalen J. A., Reinhardt B. N., Steere A. C. 1993; Western blotting in the serodiagnosis of Lyme disease. J Infect Dis 167:392–400 [CrossRef]
    [Google Scholar]
  20. Dykhuizen D. E., Baranton G. 2001; The implications of a low rate of horizontal transfer in Borrelia. Trends Microbiol 9:344–350 [CrossRef]
    [Google Scholar]
  21. Dykhuizen D. E., Polin D. S., Dunn J. J., Wilske B., Preac-Mursic V., Dattwyler R. J., Luft B. J. 1993; Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc Natl Acad Sci U S A 90:10163–10167 [CrossRef]
    [Google Scholar]
  22. Falco R. C., Fish D. 1992; A comparison of methods for sampling the deer tick, Ixodes dammini, in a Lyme disease endemic area. Exp Appl Acarol 14:165–173 [CrossRef]
    [Google Scholar]
  23. Farlow J., Postic D., Smith K. L., Jay Z., Baranton G., Keim P. 2002; Strain typing of Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii by using multiple-locus variable-number tandem repeat analysis. J Clin Microbiol 40:4612–4618 [CrossRef]
    [Google Scholar]
  24. Feavers I. M., Gray S. J., Urwin R., Russell J. E., Bygraves J. A., Kaczmarski E. B., Maiden M. C. 1999; Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J Clin Microbiol 37:3883–3887
    [Google Scholar]
  25. Fraser C. M., Casjens S., Huang W. M.35 other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586 [CrossRef]
    [Google Scholar]
  26. Gern L., Estrada-Pena A., Frandsen F.7 other authors 1998; European reservoir hosts of Borrelia burgdorferi sensu lato. Zentbl Bakteriol 287:196–204 [CrossRef]
    [Google Scholar]
  27. Guttman D. S., Wang P. W., Wang I. N., Bosler E. M., Luft B. J., Dykhuizen D. E. 1996; Multiple infections of Ixodes scapularis ticks by Borrelia burgdorferi as revealed by single-strand conformation polymorphism analysis. J Clin Microbiol 34:652–656
    [Google Scholar]
  28. Hengge U. R., Tannapfel A., Tyring S. K., Erbel R., Arendt G., Ruzicka T. 2003; Lyme borreliosis. Lancet Infect Dis 3:489–500 [CrossRef]
    [Google Scholar]
  29. Hill W. G., Roberts A. 1968; Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231 [CrossRef]
    [Google Scholar]
  30. Jauris-Heipke S., Liegl G., Preac-Mursic V., Rossler D., Schwab E., Soutschek E., Will G., Wilske B. 1995; Molecular analysis of genes encoding outer surface protein C (OspC) of Borrelia burgdorferi sensu lato: relationship to ospA genotype and evidence of lateral gene exchange of ospC. J Clin Microbiol 33:1860–1866
    [Google Scholar]
  31. Jolley K. A., Feil E. J., Chan M.-S., Maiden M. C. J. 2001; Sequence type analysis and recombinational tests (start. Bioinformatics 17:1230–1231 [CrossRef]
    [Google Scholar]
  32. Kurtenbach K., De Michelis S., Sewell H. S.10 other authors 2002; The key roles of selection and migration in the ecology of Lyme borreliosis. Int J Med Microbiol 291 Suppl 33:152–154
    [Google Scholar]
  33. Lagal V., Postic D., Ruzic-Sabljic E., Baranton G. 2003; Genetic diversity among Borrelia strains determined by single-strand conformation polymorphism analysis of the ospC gene and its association with invasiveness. J Clin Microbiol 41:5059–5065 [CrossRef]
    [Google Scholar]
  34. Lee S. H., Kim B. J., Kim J. H., Park K. H., Yeo S. J., Kim S. J., Kook Y. H. 2000; Characterization of Borrelia burgdorferi strains isolated from Korea by 16S rDNA sequence analysis and PCR-RFLP analysis of rrf(5S)–rrl (23S) intergenic spacer amplicons. Int J Syst Evol Microbiol 50:857–863 [CrossRef]
    [Google Scholar]
  35. Liveris D., Gazumyan A., Schwartz I. 1995; Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 33:589–595
    [Google Scholar]
  36. Liveris D., Varde S., Iyer R.8 other authors 1999; Genetic diversity of Borrelia burgdorferi in Lyme disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol 37:565–569
    [Google Scholar]
  37. Livey I., Gibbs C. P., Schuster R., Dorner F. 1995; Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol Microbiol 18:257–269 [CrossRef]
    [Google Scholar]
  38. Maddison D. R., Maddison W. P. 2002 MacClade 4: Analysis of Phylogeny and Character Evolution, version 4.04 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  39. Maiden M. C., Bygraves J. A., Feil E.10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145 [CrossRef]
    [Google Scholar]
  40. Mathiesen D. A., Kolbert C. P.9 other authors Oliver J. H., Jr. 1997; Genetic heterogeneity of Borrelia burgdorferi in the United States. J Infect Dis 175:98–107 [CrossRef]
    [Google Scholar]
  41. Maynard Smith J. 1992; Analysing the mosaic structure of genes. J Mol Evol 34:126–129
    [Google Scholar]
  42. Norris D. E., Johnson B. J., Piesman J., Maupin G. O., Clark J. L., Black W. C., IV. 1997; Culturing selects for specific genotypes of Borrelia burgdorferi in an enzootic cycle in Colorado. J Clin Microbiol 35:2359–2364
    [Google Scholar]
  43. Norris D. E., Johnson B. J., Piesman J., Maupin G. O., Clark J. L., Black W. C., IV. 1999; Population genetics and phylogenetic analysis of Colorado Borrelia burgdorferi. Am J Trop Med Hyg 60:699–707
    [Google Scholar]
  44. Ochman H., Lawrence J. G., Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [CrossRef]
    [Google Scholar]
  45. Ornstein K., Berglund J., Nilsson I., Norrby R., Bergstrom S. 2001; Characterization of Lyme borreliosis isolates from patients with erythema migrans and neuroborreliosis in southern Sweden. J Clin Microbiol 39:1294–1298 [CrossRef]
    [Google Scholar]
  46. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  47. Posada D., Crandall K. A. 2002; The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54:396–402 [CrossRef]
    [Google Scholar]
  48. Postic D., Assous M. V., Grimont P. A., Baranton G. 1994; Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf(5S)–rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol 44:743–752 [CrossRef]
    [Google Scholar]
  49. Qiu W. G., Bosler E. M., Campbell J. R., Ugine G. D., Wang I. N., Luft B. J., Dykhuizen D. E. 1997; A population genetic study of Borrelia burgdorferi sensu stricto from eastern Long Island, New York, suggested frequency-dependent selection, gene flow and host adaptation. Hereditas 127:203–216
    [Google Scholar]
  50. Qiu W. G., Dykhuizen D. E., Acosta M. S., Luft B. J. 2002; Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States. Genetics 160:833–849
    [Google Scholar]
  51. Rozas J., Rozas R. 1999; DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175 [CrossRef]
    [Google Scholar]
  52. Sawyer S. 1989; Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538
    [Google Scholar]
  53. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913 [CrossRef]
    [Google Scholar]
  54. Scoles G. A., Papero M., Beati L., Fish D. 2001; A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1:21–34 [CrossRef]
    [Google Scholar]
  55. Seinost G., Dykhuizen D. E., Dattwyler R. J., Golde W. T., Dunn J. J., Wang I. N., Wormser G. P., Schriefer M. E., Luft B. J. 1999a; Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun 67:3518–3524
    [Google Scholar]
  56. Seinost G., Golde W. T., Berger B. W., Dunn J. J., Qiu D., Dunkin D. S., Dykhuizen D. E., Luft B. J., Dattwyler R. J. 1999b; Infection with multiple strains of Borrelia burgdorferi sensu stricto in patients with Lyme disease. Arch Dermatol 135:1329–1333
    [Google Scholar]
  57. Steere A. C. 2001; Lyme disease. N Engl J Med 345:115–125 [CrossRef]
    [Google Scholar]
  58. Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., Schmid G. P., Johnson E., Malawista S. E. 1983; The spirochetal etiology of Lyme disease. N Engl J Med 308:733–740 [CrossRef]
    [Google Scholar]
  59. Swofford D. L. 2001 paup. Phylogenetic Analysis Using Parsimony (* and other methods). Beta, version 4.0b6 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  60. Theisen M., Borre M., Mathiesen M. J., Mikkelsen B., Lebech A. M., Hansen K. 1995; Evolution of the Borrelia burgdorferi outer surface protein OspC. J Bacteriol 177:3036–3044
    [Google Scholar]
  61. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  62. Tsao J. 2000; Vertebrate host community composition and the dynamics of Borrelia burgdorferi, the etiologic agent of Lyme disease: theory and experiments. In Department of Ecology and Evolution p  90 Chicago: University of Chicago;
    [Google Scholar]
  63. Wang I. N., Dykhuizen D. E., Qiu W., Dunn J. J., Bosler E. M., Luft B. J. 1999; Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics 151:15–30
    [Google Scholar]
  64. Wilske B., Preac-Mursic V., Schierz G., Busch K. V. 1986; Immunochemical and immunological analysis of European Borrelia burgdorferi strains. Zentbl Bakteriol Mikrobiol Hyg [A] 263:92–102
    [Google Scholar]
  65. Wilske B., Preac-Mursic V., Gobel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. 1993; An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 31:340–350
    [Google Scholar]
  66. Wilske B., Jauris-Heipke S., Lobentanzer R., Pradel I., Preac-Mursic V., Rossler D., Soutschek E., Johnson R. C. 1995; Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. J Clin Microbiol 33:103–109
    [Google Scholar]
  67. Wormser G. P., Liveris D., Nowakowski J., Nadelman R. B., Cavaliere L. F., McKenna D., Holmgren D., Schwartz I. 1999; Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J Infect Dis 180:720–725 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26944-0
Loading
/content/journal/micro/10.1099/mic.0.26944-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error