1887

Abstract

The double-stranded RNA-activated protein kinase (PKR) is a key regulator of protein translation, interferon (IFN) expression and cell survival. Upon infection of vertebrate cells in continuous culture, the alphavirus Semliki Forest virus (SFV) initiates apoptosis and IFN synthesis. To determine the effect of PKR on SFV infection, we studied the course of infection in wild-type (wt) mice, mice with a genetic deletion of PKR (PKR) and mouse embryo fibroblasts (MEFs) derived from these mice. In MEFs, PKR delayed virus protein synthesis, production of infectious virus and caspase-3-activated cell death and reduced the yield of infectious virus by 90 %. Small interfering RNA suppression of PKR levels in NIH-3T3 cells also reduced virus production and apoptosis. In MEFs, PKR was not required for initiation of IFN- gene transcription, but contributed strongly to the magnitude of this response. Levels of IFN- transcripts in PKR MEFs at 8 h were 80 % lower than those in wt MEFs and levels of functional IFN at 24 h were 95 % lower. Following infection of wt and PKR mice, SFV4 and SFV A7(74) were avirulent. PKR increased levels of serum IFN and the rate of clearance of infectious virus from the brain. In summary, in response to SFV, PKR exerts an early antiviral effect that delays virus protein production and release of infectious virus and, whilst PKR is not required for induction of apoptosis or activation of the type I IFN response, it strongly augments the type I IFN response and contributes to clearance of infectious virus from the mouse brain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007336-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1382.html?itemId=/content/journal/jgv/10.1099/vir.0.007336-0&mimeType=html&fmt=ahah

References

  1. Abraham N., Stojdl D. F., Duncan P. I., Methot N., Ishii T., Dube M., Vanderhyden B. C., Atkins H. L., Gray D. A. other authors 1999; Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 274:5953–5962 [CrossRef]
    [Google Scholar]
  2. Amor S., Scallan M. F., Morris M. M., Dyson H., Fazakerley J. K. 1996; Role of immune responses in protection and pathogenesis during Semliki Forest virus encephalitis. J Gen Virol 77:281–291 [CrossRef]
    [Google Scholar]
  3. Andrejeva J., Childs K. S., Young D. F., Carlos T. S., Stock N., Goodbourn S., Randall R. E. 2004; The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN - β promoter. Proc Natl Acad Sci U S A 101:17264–17269 [CrossRef]
    [Google Scholar]
  4. Baltzis D., Li S., Koromilas A. E. 2002; Functional characterization of pkr gene products expressed in cells from mice with a targeted deletion of the N terminus or C terminus domain of PKR. J Biol Chem 277:38364–38372 [CrossRef]
    [Google Scholar]
  5. Berlanga J. J., Ventoso I., Harding H. P., Deng J., Ron D., Sonenberg N., Carrasco L., de Haro C. 2006; Antiviral effect of the mammalian translation initiation factor 2 α kinase GCN2 against RNA viruses. EMBO J 25:1730–1740 [CrossRef]
    [Google Scholar]
  6. Bradish C. J., Titmuss D. 1981; The effects of interferon and double-stranded RNA upon the virus–host interaction: studies with togavirus strains in mice. J Gen Virol 53:21–30 [CrossRef]
    [Google Scholar]
  7. Bradish C. J., Allner K., Fitzgeorge R. 1975; Immunomodification and the expression of virulence in mice by defined strains of Semliki Forest virus: the effects of cyclophosphamide. J Gen Virol 28:225–237 [CrossRef]
    [Google Scholar]
  8. Breakwell L., Dosenovic P., Karlsson Hedestam G. B., D'Amato M., Liljeström P., Fazakerley J., McInerney G. M. 2007; Semliki Forest virus non-structural protein 2 is involved in the suppression of the type I interferon response. J Virol 81:8677–8684 [CrossRef]
    [Google Scholar]
  9. Brown A. R., Webb J., Rebus S., Walker R., Williams A., Fazakerley J. K. 2003; Inducible cytokine gene expression in the brain in the ME7/CV mouse model of scrapie is highly restricted, is at a strikingly low level relative to the degree of gliosis and occurs only late in disease. J Gen Virol 84:2605–2611 [CrossRef]
    [Google Scholar]
  10. Clemens M. J., Hershey J. W., Hovanessian A. C., Jacobs B. C., Katze M. G., Kaufman R. J., Lengyel P., Samuel C. E., Sen G. C., Williams B. R. 1993; PKR: proposed nomenclature for the RNA-dependent protein kinase induced by interferon. J Interferon Res 13:241 [CrossRef]
    [Google Scholar]
  11. de Haro C., Mendez R., Santoyo J. 1996; The eIF-2 α kinases and the control of protein synthesis. FASEB J 10:1378–1387
    [Google Scholar]
  12. Deuber S. A., Pavlovic J. 2007; Virulence of a mouse-adapted Semliki Forest virus strain is associated with reduced susceptibility to interferon. J Gen Virol 88:1952–1959 [CrossRef]
    [Google Scholar]
  13. Fazakerley J. K. 2004; Semliki forest virus infection of laboratory mice: a model to study the pathogenesis of viral encephalitis. Arch Virol Suppl (18:179–190
    [Google Scholar]
  14. Fazakerley J. K., Pathak S., Scallan M., Amor S., Dyson H. 1993; Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195:627–637 [CrossRef]
    [Google Scholar]
  15. Fragkoudis R., Breakwell L., McKimmie C., Boyd A., Barry G., Kohl A., Merits A., Fazakerley J. K. 2007; The type I interferon system protects mice from Semliki Forest virus by preventing widespread virus dissemination in extraneural tissues, but does not mediate the restricted replication of avirulent virus in central nervous system neurons. J Gen Virol 88:3373–3384 [CrossRef]
    [Google Scholar]
  16. Frolov I., Schlesinger S. 1994a; Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 68:1721–1727
    [Google Scholar]
  17. Frolov I., Schlesinger S. 1994b; Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon. J Virol 68:8111–8117
    [Google Scholar]
  18. Garcia M. A., Gil J., Ventoso I., Guerra S., Domingo E., Rivas C., Esteban M. 2006; Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032–1060 [CrossRef]
    [Google Scholar]
  19. Gil J., Alcami J., Esteban M. 2000; Activation of NF- κ B by the dsRNA-dependent protein kinase, PKR involves the I κ B kinase complex. Oncogene 19:1369–1378 [CrossRef]
    [Google Scholar]
  20. Gitlin L., Barchet W., Gilfillan S., Cella M., Beutler B., Flavell R. A., Diamond M. S., Colonna M. 2006; Essential role of mda-5 in type I IFN responses to polyriboinosinic : polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103:8459–8464 [CrossRef]
    [Google Scholar]
  21. Glasgow G. M., Mcgee M. M., Sheahan B. J., Atkins G. J. 1997; Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78:1559–1563
    [Google Scholar]
  22. Glasgow G. M., Mcgee M. M., Tarbatt C. J., Mooney D. A., Sheahan B. J., Atkins G. J. 1998; The Semliki Forest virus vector induces p53-independent apoptosis. J Gen Virol 79:2405–2410
    [Google Scholar]
  23. Gorchakov R., Frolova E., Williams B. R., Rice C. M., Frolov I. 2004; PKR-dependent and -independent mechanisms are involved in translational shutoff during Sindbis virus infection. J Virol 78:8455–8467 [CrossRef]
    [Google Scholar]
  24. Gorchakov R., Frolova E., Frolov I. 2005; Inhibition of transcription and translation in Sindbis virus-infected cells. J Virol 79:9397–9409 [CrossRef]
    [Google Scholar]
  25. Grandgirard D., Studer E., Monney L., Belser T., Fellay I., Borner C., Michel M. R. 1998; Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J 17:1268–1278 [CrossRef]
    [Google Scholar]
  26. Grieder F. B., Vogel S. N. 1999; Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology 257:106–118 [CrossRef]
    [Google Scholar]
  27. Griffin D. E. 2005; Neuronal cell death in alphavirus encephalomyelitis. Curr Top Microbiol Immunol 289:57–77
    [Google Scholar]
  28. Haines G. K., Ghadge G. D., Becker S., Kies M., Pelzer H., Thimmappaya B., Radosevich J. A. 1993; Correlation of the expression of double-stranded RNA-dependent protein kinase (p68) with differentiation in head and neck squamous cell carcinoma. Virchows Arch B Cell Pathol Incl Mol Pathol 63:289–295 [CrossRef]
    [Google Scholar]
  29. Henry G. L., McCormack S. J., Thomis D. C., Samuel C. E. 1994; Mechanism of interferon action. Translational control and the RNA-dependent protein kinase (PKR): antagonists of PKR enhance the translational activity of mRNAs that include a 161 nucleotide region from reovirus S1 mRNA. J Biol Regul Homeost Agents 8:15–24
    [Google Scholar]
  30. Jagus R., Joshi B., Barber G. N. 1999; PKR, apoptosis and cancer. Int J Biochem Cell Biol 31:123–138 [CrossRef]
    [Google Scholar]
  31. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T. other authors 2006; Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 [CrossRef]
    [Google Scholar]
  32. Kedersha N. L., Gupta M., Li W., Miller I., Anderson P. 1999; RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 α to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442 [CrossRef]
    [Google Scholar]
  33. Kumar A., Haque J., Lacoste J., Hiscott J., Williams B. R. 1994; Double-stranded RNA-dependent protein kinase activates transcription factor NF- κ B by phosphorylating I κ B. Proc Natl Acad Sci U S A 91:6288–6292 [CrossRef]
    [Google Scholar]
  34. Langland J. O., Cameron J. M., Heck M. C., Jancovich J. K., Jacobs B. L. 2006; Inhibition of PKR by RNA and DNA viruses. Virus Res 119:100–110 [CrossRef]
    [Google Scholar]
  35. Lee S. B., Esteban M. 1994; The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199:491–496 [CrossRef]
    [Google Scholar]
  36. Lemm J. A., Rice C. M. 1993a; Assembly of functional Sindbis virus RNA replication complexes: requirement for coexpression of P123 and P34. J Virol 67:1905–1915
    [Google Scholar]
  37. Lemm J. A., Rice C. M. 1993b; Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. J Virol 67:1916–1926
    [Google Scholar]
  38. Liljeström P., Garoff H. 1991; A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9:1356–1361 [CrossRef]
    [Google Scholar]
  39. Lundstrom K., Abenavoli A., Malgaroli A., Ehrengruber M. U. 2003; Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Ther 7:202–209 [CrossRef]
    [Google Scholar]
  40. Marie I., Durbin J. E., Levy D. E. 1998; Differential viral induction of distinct interferon- α genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660–6669 [CrossRef]
    [Google Scholar]
  41. McAllister C. S., Samuel C. E. 2009; The RNA-activated protein kinase enhances the induction of interferon- β and apoptosis by cytoplasmic RNA sensors. J Biol Chem 284:1644–1651
    [Google Scholar]
  42. McInerney G. M., Kedersha N. L., Kaufman R. J., Anderson P., Liljeström P. 2005; Importance of eIF2 α phosphorylation and stress granule assembly in alphavirus translation regulation. Mol Biol Cell 16:3753–3763 [CrossRef]
    [Google Scholar]
  43. McKimmie C. S., Fazakerley J. K. 2005; In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169:116–125 [CrossRef]
    [Google Scholar]
  44. Medigeshi G. R., Lancaster A. M., Hirsch A. J., Briese T., Lipkin W. I., Defilippis V., Fruh K., Mason P. W., Nikolich-Zugich J., Nelson J. A. 2007; West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol 81:10849–10860 [CrossRef]
    [Google Scholar]
  45. Mundschau L. J., Faller D. V. 1995; Platelet-derived growth factor signal transduction through the interferon-inducible kinase PKR. Immediate early gene induction. J Biol Chem 270:3100–3106 [CrossRef]
    [Google Scholar]
  46. Orvedahl A., Levine B. 2008; Autophagy and viral neurovirulence. Cell Microbiol 10:1747–1756 [CrossRef]
    [Google Scholar]
  47. Pathak S., Webb H. E., Oaten S. W., Bateman S. 1976; An electron-microscopic study of the development of virulent and avirulent strains of Semliki Forest virus in mouse brain. J Neurol Sci 28:289–300 [CrossRef]
    [Google Scholar]
  48. Peel A. L., Bredesen D. E. 2003; Activation of the cell stress kinase PKR in Alzheimer's disease and human amyloid precursor protein transgenic mice. Neurobiol Dis 14:52–62 [CrossRef]
    [Google Scholar]
  49. Powers A. M., Logue C. H. 2007; Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377 [CrossRef]
    [Google Scholar]
  50. Ryman K. D., Klimstra W. B., Nguyen K. B., Biron C. A., Johnston R. E. 2000; Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol 74:3366–3378 [CrossRef]
    [Google Scholar]
  51. Ryman K. D., White L. J., Johnston R. E., Klimstra W. B. 2002; Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol 15:53–76 [CrossRef]
    [Google Scholar]
  52. Ryman K. D., Meier K. C., Nangle E. M., Ragsdale S. L., Korneeva N. L., Rhoads R. E., MacDonald M. R., Klimstra W. B. 2005; Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J Virol 79:1487–1499 [CrossRef]
    [Google Scholar]
  53. Sadler A. J., Williams B. R. 2007; Structure and function of the protein kinase R. Curr Top Microbiol Immunol 316:253–292
    [Google Scholar]
  54. Sawicki D. L., Silverman R. H., Williams B. R., Sawicki S. G. 2003; Alphavirus minus-strand synthesis and persistence in mouse embryo fibroblasts derived from mice lacking RNase L and protein kinase R. J Virol 77:1801–1811 [CrossRef]
    [Google Scholar]
  55. Scallan M. F., Allsopp T. E., Fazakerley J. K. 1997; bcl-2 acts early to restrict Semliki Forest virus replication and delays virus-induced programmed cell death. J Virol 71:1583–1590
    [Google Scholar]
  56. Sjöberg E. M., Suomalainen M., Garoff H. 1994; A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Biotechnology (N Y) 12:1127–1131
    [Google Scholar]
  57. Takkinen K. 1986; Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. Nucleic Acids Res 14:5667–5682 [CrossRef]
    [Google Scholar]
  58. Tamm K., Merits A., Sarand I. 2008; Mutations in the nuclear localization signal of nsP2 influencing RNA synthesis, protein expression and cytotoxicity of Semliki Forest virus. J Gen Virol 89:676–686 [CrossRef]
    [Google Scholar]
  59. Tesfay M. Z., Yin J., Gardner C. L., Khoretonenko M. V., Korneeva N. L., Rhoads R. E., Ryman K. D., Klimstra W. B. 2008; Alpha/beta interferon inhibits cap-dependent translation of viral but not cellular mRNA by a PKR-independent mechanism. J Virol 82:2620–2630 [CrossRef]
    [Google Scholar]
  60. Urban C., Rhême C., Maerz S., Berg B., Pick R., Nitschke R., Borner C. 2008; Apoptosis induced by Semliki Forest virus is RNA replication dependent and mediated via Bak. Cell Death Differ 15:1396–1407 [CrossRef]
    [Google Scholar]
  61. Ventoso I., Sanz M. A., Molina S., Berlanga J. J., Carrasco L., Esteban M. 2006; Translational resistance of late alphavirus mRNA to eIF2 α phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev 20:87–100 [CrossRef]
    [Google Scholar]
  62. Xiong C., Levis R., Shen P., Schlesinger S., Rice C. M., Huang H. V. 1989; Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243:1188–1191 [CrossRef]
    [Google Scholar]
  63. Yang Y. L., Reis L. F. L., Pavlovic J., Aguzzi A., Schafer R., Kumar A., Williams B. R. G., Aguet M., Weissman C. 1995; Deficient signaling in mice devoid of double-stranded RNA dependent protein kinase. EMBO J 14:6095–6106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007336-0
Loading
/content/journal/jgv/10.1099/vir.0.007336-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error