1887

Abstract

The coxsackievirus–adenovirus receptor (CAR) is the described primary receptor for adenovirus serotype 5 (Ad5), a common human pathogen that has been exploited as a viral vector for gene therapy and vaccination. This study showed that monocytes and dendritic cells (DCs), such as freshly isolated human blood myeloid DCs, plasmacytoid DCs and monocyte-derived DCs, are susceptible to recombinant Ad5 (rAd5) infection despite their lack of CAR expression. Langerhans cells and dermal DCs from skin expressed CAR, but blocking CAR only partly decreased rAd5 infection, together suggesting that other receptor pathways mediate viral entry of these cells. Lactoferrin (Lf), an abundant protein in many bodily fluids known for its antiviral and antibacterial properties, promoted rAd5 infection in all cell populations except plasmacytoid DCs using a CAR-independent process. Lf caused phenotypic differentiation of the DCs, but cell activation played only a minor role in the increase in infection frequencies. The C-type lectin receptor DC-SIGN facilitated viral entry of rAd5–Lf complexes and this was dependent on high-mannose-type -linked glycans on Lf. These results suggest that Lf present at high levels at mucosal sites can facilitate rAd5 attachment and enhance infection of DCs. A better understanding of the tropism and receptor mechanisms of Ad5 may help explain Ad5 pathogenesis and guide the engineering of improved rAd vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008342-0
2009-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1600.html?itemId=/content/journal/jgv/10.1099/vir.0.008342-0&mimeType=html&fmt=ahah

References

  1. Barouch D. H., Nabel G. J. 2005; Adenovirus vector-based vaccines for human immunodeficiency virus type 1. Hum Gene Ther 16:149–156 [CrossRef]
    [Google Scholar]
  2. Barouch D. H., Pau M. G., Custers J. H., Koudstaal W., Kostense S., Havenga M. J., Truitt D. M., Sumida S. M., Kishko M. G. other authors 2004; Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 172:6290–6297 [CrossRef]
    [Google Scholar]
  3. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 [CrossRef]
    [Google Scholar]
  4. Cheng C., Gall J. G., Kong W. P., Sheets R. L., Gomez P. L., King C. R., Nabel G. J. 2007; Mechanism of Ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells. PLoS Pathog 3:e25 [CrossRef]
    [Google Scholar]
  5. Coddeville B., Strecker G., Wieruszeski J. M., Vliegenthart J. F., van Halbeek H., Peter-Katalinic J., Egge H., Spik G. 1992; Heterogeneity of bovine lactotransferrin glycans. Characterization of α -d-Galp-(1→3)- β -d-Gal- and α -NeuAc-(2→6)- β -d-GalpNAc-(1→4)- β -d-GlcNAc-substituted N -linked glycans. Carbohydr Res 236:145–164 [CrossRef]
    [Google Scholar]
  6. Cohen C. J., Shieh J. T., Pickles R. J., Okegawa T., Hsieh J. T., Bergelson J. M. 2001; The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98:15191–15196 [CrossRef]
    [Google Scholar]
  7. Dechecchi M. C., Tamanini A., Bonizzato A., Cabrini G. 2000; Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268:382–390 [CrossRef]
    [Google Scholar]
  8. Dechecchi M. C., Melotti P., Bonizzato A., Santacatterina M., Chilosi M., Cabrini G. 2001; Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 75:8772–8780 [CrossRef]
    [Google Scholar]
  9. de Gruijl T. D., Ophorst O. J., Goudsmit J., Verhaagh S., Lougheed S. M., Radosevic K., Havenga M. J., Scheper R. J. 2006; Intradermal delivery of adenoviral type-35 vectors leads to high efficiency transduction of mature, CD8+ T cell-stimulating skin-emigrated dendritic cells. J Immunol 177:2208–2215 [CrossRef]
    [Google Scholar]
  10. de la Rosa G., Yang D., Tewary P., Varadhachary A., Oppenheim J. J. 2008; Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J Immunol 180:6868–6876 [CrossRef]
    [Google Scholar]
  11. Di Biase A. M., Pietrantoni A., Tinari A., Siciliano R., Valenti P., Antonini G., Seganti L., Superti F. 2003; Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. J Med Virol 69:495–502 [CrossRef]
    [Google Scholar]
  12. Drobni P., Naslund J., Evander M. 2004; Lactoferrin inhibits human papillomavirus binding and uptake in vitro. Antiviral Res 64:63–68 [CrossRef]
    [Google Scholar]
  13. Ebbinghaus C., Al-Jaibaji A., Operschall E., Schoffel A., Peter I., Greber U. F., Hemmi S. 2001; Functional and selective targeting of adenovirus to high-affinity Fc γ receptor I-positive cells by using a bispecific hybrid adapter. J Virol 75:480–489 [CrossRef]
    [Google Scholar]
  14. Groot F., Geijtenbeek T. B., Sanders R. W., Baldwin C. E., Sanchez-Hernandez M., Floris R., van Kooyk Y., de Jong E. C., Berkhout B. 2005; Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN–gp120 interaction. J Virol 79:3009–3015 [CrossRef]
    [Google Scholar]
  15. Havenga M. J., Lemckert A. A., Grimbergen J. M., Vogels R., Huisman L. G., Valerio D., Bout A., Quax P. H. 2001; Improved adenovirus vectors for infection of cardiovascular tissues. J Virol 75:3335–3342 [CrossRef]
    [Google Scholar]
  16. Hidaka C., Milano E., Leopold P. L., Bergelson J. M., Hackett N. R., Finberg R. W., Wickham T. J., Kovesdi I., Roelvink P., Crystal R. G. 1999; CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J Clin Invest 103:579–587 [CrossRef]
    [Google Scholar]
  17. Hsu K. H., Lonberg-Holm K., Alstein B., Crowell R. L. 1988; A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J Virol 62:1647–1652
    [Google Scholar]
  18. Johansson C., Jonsson M., Marttila M., Persson D., Fan X. L., Skog J., Frangsmyr L., Wadell G., Arnberg N. 2007; Adenoviruses use lactoferrin as a bridge for CAR-independent binding to and infection of epithelial cells. J Virol 81:954–963 [CrossRef]
    [Google Scholar]
  19. Korokhov N., de Gruijl T. D., Aldrich W. A., Triozzi P. L., Banerjee P. T., Gillies S. D., Curiel T. J., Douglas J. T., Scheper R. J., Curiel D. T. 2005; High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biol Ther 4:289–294 [CrossRef]
    [Google Scholar]
  20. Legrand D., Elass E., Carpentier M., Mazurier J. 2005; Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 62:2549–2559 [CrossRef]
    [Google Scholar]
  21. Leopold P. L., Wendland R. L., Vincent T., Crystal R. G. 2006; Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway. J Virol 80:10237–10247 [CrossRef]
    [Google Scholar]
  22. Li E., Stupack D., Klemke R., Cheresh D. A., Nemerow G. R. 1998; Adenovirus endocytosis via α v integrins requires phosphoinositide-3-OH kinase. J Virol 72:2055–2061
    [Google Scholar]
  23. Lore K., Sonnerborg A., Spetz A. L., Andersson U., Andersson J. 1998; Immunocytochemical detection of cytokines and chemokines in Langerhans cells and in vitro derived dendritic cells. J Immunol Methods 214:97–111 [CrossRef]
    [Google Scholar]
  24. Lore K., Betts M. R., Brenchley J. M., Kuruppu J., Khojasteh S., Perfetto S., Roederer M., Seder R. A., Koup R. A. 2003; Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J Immunol 171:4320–4328 [CrossRef]
    [Google Scholar]
  25. Lore K., Smed-Sorensen A., Vasudevan J., Mascola J. R., Koup R. A. 2005; Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201:2023–2033 [CrossRef]
    [Google Scholar]
  26. Lore K., Adams W. C., Havenga M., Precopio M. L., Holterman L., Goudsmit J., Koup R. A. 2007; Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J Immunol 179:1721–1729 [CrossRef]
    [Google Scholar]
  27. Maguire C. A., Sapinoro R., Girgis N., Rodriguez-Colon S. M., Ramirez S. H., Williams J., Dewhurst S. 2006; Recombinant adenovirus type 5 vectors that target DC-SIGN, ChemR23 and α v β 3 integrin efficiently transduce human dendritic cells and enhance presentation of vectored antigens. Vaccine 24:671–682 [CrossRef]
    [Google Scholar]
  28. Masson P. L., Heremans J. F., Dive C. H. 1966; An iron-binding protein common to many external secretions. Clin Chim Acta 14:735–739 [CrossRef]
    [Google Scholar]
  29. McConnell M. J., Imperiale M. J. 2004; Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15:1022–1033 [CrossRef]
    [Google Scholar]
  30. Miyazawa K., Mantel C., Lu L., Morrison D. C., Broxmeyer H. E. 1991; Lactoferrin–lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J Immunol 146:723–729
    [Google Scholar]
  31. Naarding M. A., Ludwig I. S., Groot F., Berkhout B., Geijtenbeek T. B., Pollakis G., Paxton W. A. 2005; Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. J Clin Invest 115:3256–3264 [CrossRef]
    [Google Scholar]
  32. Pierce A., Colavizza D., Benaissa M., Maes P., Tartar A., Montreuil J., Spik G. 1991; Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 196:177–184 [CrossRef]
    [Google Scholar]
  33. Pietrantoni A., Di Biase A. M., Tinari A., Marchetti M., Valenti P., Seganti L., Superti F. 2003; Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother 47:2688–2691 [CrossRef]
    [Google Scholar]
  34. Puddu P., Valenti P., Gessani S. 2009; Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie 91:11–18 [CrossRef]
    [Google Scholar]
  35. Rea D., Havenga M. J., van Den Assem M., Sutmuller R. P., Lemckert A., Hoeben R. C., Bout A., Melief C. J., Offringa R. 2001; Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol 166:5236–5244 [CrossRef]
    [Google Scholar]
  36. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-Castagnoli P. 2001; Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367 [CrossRef]
    [Google Scholar]
  37. Roelvink P. W., Kovesdi I., Wickham T. J. 1996; Comparative analysis of adenovirus fiber–cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment. J Virol 70:7614–7621
    [Google Scholar]
  38. Roelvink P. W., Lizonova A., Lee J. G., Li Y., Bergelson J. M., Finberg R. W., Brough D. E., Kovesdi I., Wickham T. J. 1998; The coxsackievirus–adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72:7909–7915
    [Google Scholar]
  39. Rozis G., de Silva S., Benlahrech A., Papagatsias T., Harris J., Gotch F., Dickson G., Patterson S. 2005; Langerhans cells are more efficiently transduced than dermal dendritic cells by adenovirus vectors expressing either group C or group B fibre protein: implications for mucosal vaccines. Eur J Immunol 35:2617–2626 [CrossRef]
    [Google Scholar]
  40. Smed-Sorensen A., Lore K., Vasudevan J., Louder M. K., Andersson J., Mascola J. R., Spetz A. L., Koup R. A. 2005; Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79:8861–8869 [CrossRef]
    [Google Scholar]
  41. Smith T. A., Idamakanti N., Marshall-Neff J., Rollence M. L., Wright P., Kaloss M., King L., Mech C., Dinges L. other authors 2003; Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 14:1595–1604 [CrossRef]
    [Google Scholar]
  42. Spadaro M., Caorsi C., Ceruti P., Varadhachary A., Forni G., Pericle F., Giovarelli M. 2008; Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22:2747–2757 [CrossRef]
    [Google Scholar]
  43. Spik G., Coddeville B., Montreuil J. 1988; Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie 70:1459–1469 [CrossRef]
    [Google Scholar]
  44. Sung S. S., Fu S. M., Rose C. E. Jr, Gaskin F., Ju S. T., Beaty S. R. 2006; A major lung CD103 ( α E)- β 7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176:2161–2172 [CrossRef]
    [Google Scholar]
  45. Suzuki Y. A., Lonnerdal B. 2002; Characterization of mammalian receptors for lactoferrin. Biochem Cell Biol 80:75–80 [CrossRef]
    [Google Scholar]
  46. Suzuki Y. A., Lopez V., Lonnerdal B. 2005; Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62:2560–2575 [CrossRef]
    [Google Scholar]
  47. Tatsis N., Ertl H. C. 2004; Adenoviruses as vaccine vectors. Mol Ther 10:616–629 [CrossRef]
    [Google Scholar]
  48. Tillman B. W., de Gruijl T. D., Luykx-de Bakker S. A., Scheper R. J., Pinedo H. M., Curiel T. J., Gerritsen W. R., Curiel D. T. 1999; Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 162:6378–6383
    [Google Scholar]
  49. Tomko R. P., Xu R., Philipson L. 1997; HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 94:3352–3356 [CrossRef]
    [Google Scholar]
  50. Turville S. G., Cameron P. U., Handley A., Lin G., Pohlmann S., Doms R. W., Cunningham A. L. 2002; Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3:975–983 [CrossRef]
    [Google Scholar]
  51. van Berkel P. H., van Veen H. A., Geerts M. E., de Boer H. A., Nuijens J. H. 1996; Heterogeneity in utilization of N -glycosylation sites Asn624 and Asn138 in human lactoferrin: a study with glycosylation-site mutants. Biochem J 319:117–122
    [Google Scholar]
  52. van der Strate B. W., Beljaars L., Molema G., Harmsen M. C., Meijer D. K. 2001; Antiviral activities of lactoferrin. Antiviral Res 52:225–239 [CrossRef]
    [Google Scholar]
  53. Waarts B. L., Aneke O. J., Smit J. M., Kimata K., Bittman R., Meijer D. K., Wilschut J. 2005; Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate. Virology 333:284–292 [CrossRef]
    [Google Scholar]
  54. Waddington S. N., McVey J. H., Bhella D., Parker A. L., Barker K., Atoda H., Pink R., Buckley S. M., Greig J. A. other authors 2008; Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132:397–409 [CrossRef]
    [Google Scholar]
  55. Wally J., Buchanan S. K. 2007; A structural comparison of human serum transferrin and human lactoferrin. Biometals 20:249–262 [CrossRef]
    [Google Scholar]
  56. Wang K., Huang S., Kapoor-Munshi A., Nemerow G. 1998; Adenovirus internalization and infection require dynamin. J Virol 72:3455–3458
    [Google Scholar]
  57. Weinberg E. D. 2001; Human lactoferrin: a novel therapeutic with broad spectrum potential. J Pharm Pharmacol 53:1303–1310 [CrossRef]
    [Google Scholar]
  58. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins α v β 3 and α v β 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319 [CrossRef]
    [Google Scholar]
  59. Wu L., Martin T. D., Vazeux R., Unutmaz D., KewalRamani V. N. 2002; Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission. J Virol 76:5905–5914 [CrossRef]
    [Google Scholar]
  60. Xie J., Chiang L., Contreras J., Wu K., Garner J. A., Medina-Kauwe L., Hamm-Alvarez S. F. 2006; Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 80:11833–11851 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008342-0
Loading
/content/journal/jgv/10.1099/vir.0.008342-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error