1887

Abstract

Triple-reassortant swine influenza viruses circulating in North American pigs contain the internal genes derived from swine (matrix, non-structural and nucleoprotein), human [polymerase basic 1 (PB1)] and avian (polymerase acidic and PB2) influenza viruses forming a constellation of genes that is well conserved and is called the triple-reassortant internal gene (TRIG) cassette. In contrast, the external genes [haemagglutinin (HA) and neuraminidase (NA)] are less conserved, reflecting multiple reassortant events that have produced viruses with different combinations of HA and NA genes. This study hypothesized that maintenance of the TRIG cassette confers a selective advantage to the virus. To test this hypothesis, pigs were co-infected with the triple-reassortant H3N2 A/Swine/Texas/4199-2/98 (Tx/98) and the classical H1N1 A/Swine/Iowa/15/1930 viruses and co-housed with a group of sentinel animals. This direct contact group was subsequently moved into contact with a second group of naïve animals. Four different subtypes (H1N1, H1N2, H3N1 and H3N2) of influenza virus were identified in bronchoalveolar lavage fluid collected from the lungs of the experimentally infected pigs, with most of the viruses containing TRIG from the Tx/98 virus. Interestingly, only the intact H3N2 Tx/98 virus was transmitted from the infected pigs to the direct-contact animals and from them to the second contact group of pigs. These results demonstrated that multiple reassortments can occur within a host; however, only specific gene constellations are readily transmissible. It was concluded that certain HA and NA gene pairs, in conjunction with the TRIG cassette, may have a competitive advantage over other combinations for transmission and maintenance in swine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021402-0
2010-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/9/2314.html?itemId=/content/journal/jgv/10.1099/vir.0.021402-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. J.(2000). A review of avian influenza in different bird species. Vet Microbiol 74, 3–13.[CrossRef] [Google Scholar]
  2. Choi, Y. K., Goyal, S. M. & Joo, H. S.(2002). Prevalence of swine influenza virus subtypes on swine farms in the United States. Arch Virol 147, 1209–1220.[CrossRef] [Google Scholar]
  3. Fouchier, R. A., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D., Rimmelzwaan, G. F., Olsen, B. & Osterhaus, A. D.(2005). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814–2822.[CrossRef] [Google Scholar]
  4. Garten, R. J., Davis, C. T., Russell, C. A., Shu, B., Lindstrom, S., Balish, A., Sessions, W. M., Xu, X., Skepner, E. & other authors(2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197–201.[CrossRef] [Google Scholar]
  5. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G.(2000). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef] [Google Scholar]
  6. Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., Donatelli, I., Kida, H., Paulson, J. C. & other authors(1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72, 7367–7373. [Google Scholar]
  7. Karasin, A. I., Olsen, C. W. & Anderson, G. A.(2000a). Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana. J Clin Microbiol 38, 2453–2456. [Google Scholar]
  8. Karasin, A. I., Schutten, M. M., Cooper, L. A., Smith, C. B., Subbarao, K., Anderson, G. A., Carman, S. & Olsen, C. W.(2000b). Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977–1999: evidence for wholly human and reassortant virus genotypes. Virus Res 68, 71–85.[CrossRef] [Google Scholar]
  9. Karasin, A. I., Carman, S. & Olsen, C. W.(2006). Identification of human H1N2 and human–swine reassortant H1N2 and H1N1 influenza A viruses among pigs in Ontario, Canada (2003 to 2005). J Clin Microbiol 44, 1123–1126.[CrossRef] [Google Scholar]
  10. Kida, H., Ito, T., Yasuda, J., Shimizu, Y., Itakura, C., Shortridge, K. F., Kawaoka, Y. & Webster, R. G.(1994). Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75, 2183–2188.[CrossRef] [Google Scholar]
  11. Lekcharoensuk, P., Vincent, A. L., Lager, K. M., Solórzano, A., García-Sastre, A. & Richt, J. A.(2005). Establishment of a pig model for the 1930 H1N1 swine influenza virus and application of reverse genetics. In XIII International Congress of Virology, 23–28 July 2005, San Francisco, CA, USA, p. 42.
  12. Lekcharoensuk, P., Lager, K. M., Vemulapalli, R., Woodruff, M., Vincent, A. L. & Richt, J. A.(2006). Novel swine influenza virus subtype H3N1, United States. Emerg Infect Dis 12, 787–794.[CrossRef] [Google Scholar]
  13. Ma, W., Gramer, M., Rossow, K. & Yoon, K. J.(2006). Isolation and genetic characterization of new reassortant H3N1 swine influenza virus from pigs in the midwestern United States. J Virol 80, 5092–5096.[CrossRef] [Google Scholar]
  14. Ma, W., Vincent, A. L., Gramer, M. R., Brockwell, C. B., Lager, K. M., Janke, B. H., Gauger, P. C., Patnayak, D. P., Webby, R. J. & Richt, J. A.(2007). Identification of H2N3 influenza A viruses from swine in the United States. Proc Natl Acad Sci U S A 104, 20949–20954.[CrossRef] [Google Scholar]
  15. Ma, W., Lager, K. M., Vincent, A. L., Janke, B. H., Gramer, M. R. & Richt, J. A.(2009). The role of swine in the generation of novel influenza viruses. Zoonoses Public Health 56, 326–337.[CrossRef] [Google Scholar]
  16. Naffakh, N., Massin, P., Escriou, N., Crescenzo-Chaigne, B. & van der Werf, S.(2000). Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol 81, 1283–1291. [Google Scholar]
  17. Olsen, C. W.(2002). The emergence of novel swine influenza viruses in North America. Virus Res 85, 199–210.[CrossRef] [Google Scholar]
  18. Palmer, D. F., Coleman, M. T., Dowdle, W. D. & Schild, G. O.(1975).Advanced Laboratory Techniques for Influenza Diagnosis. Washington, DC: US Department of Health, Education, and Welfare.
  19. Quinlivan, M., Zamarin, D., García-Sastre, A., Cullinane, A., Chambers, T. & Palese, P.(2005). Attenuation of equine influenza viruses through truncations of the NS1 protein. J Virol 79, 8431–8439.[CrossRef] [Google Scholar]
  20. Richt, J. A., Lager, K. M., Janke, B. H., Woods, R. D., Webster, R. G. & Webby, R. J.(2003). Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States. J Clin Microbiol 41, 3198–3205.[CrossRef] [Google Scholar]
  21. Scholtissek, C.(1994). Source for influenza pandemics. Eur J Epidemiol 10, 455–458.[CrossRef] [Google Scholar]
  22. Shope, R. E.(1931). Swine influenza. III. Filtration experiments and etiology. J Exp Med 54, 373–385.[CrossRef] [Google Scholar]
  23. Smith, W., Andrewes, C. H. & Laidlaw, P. P.(1933). A virus obtained from influenza patients. Lancet ii, 66–68. [Google Scholar]
  24. Smith, G. J., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J. & other authors(2009). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125.[CrossRef] [Google Scholar]
  25. Vincent, A. L., Lager, K. M., Ma, W., Lekcharoensuk, P., Gramer, M. R., Loiacono, C. & Richt, J. A.(2006). Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States. Vet Microbiol 118, 212–222.[CrossRef] [Google Scholar]
  26. Vincent, A. L., Ma, W., Lager, K. M., Janke, B. H. & Richt, J. A.(2008). Swine influenza viruses a North American perspective. Adv Virus Res 72, 127–154. [Google Scholar]
  27. Vincent, A. L., Ma, W., Lager, K. M., Gramer, M. R., Richt, J. A. & Janke, B. H.(2009). Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes 39, 176–185.[CrossRef] [Google Scholar]
  28. Webby, R. J., Swenson, S. L., Krauss, S. L., Gerrish, P. J., Goyal, S. M. & Webster, R. G.(2000). Evolution of swine H3N2 influenza viruses in the United States. J Virol 74, 8243–8251.[CrossRef] [Google Scholar]
  29. Webby, R. J., Rossow, K., Erickson, G., Sims, Y. & Webster, R.(2004). Multiple lineages of antigenically and genetically diverse influenza A virus co-circulate in the United States swine population. Virus Res 103, 67–73.[CrossRef] [Google Scholar]
  30. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y.(1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179. [Google Scholar]
  31. Weingartl, H. M., Albrecht, R. A., Lager, K., Babiuk, S., Marszal, P., Neufeld, J., Embury-Hyatt, C., Lekcharoensuk, P., Tumpey, T. M. & other authors(2009). Experimental infection of pigs with the human 1918 pandemic influenza virus. J Virol 83, 4287–4296.[CrossRef] [Google Scholar]
  32. WHO(2009). Infection of farmed animals with the pandemic virus. In Pandemic (H1N1) 2009 Briefing Note 15. http://www.who.int/csr/disease/swineflu/notes/briefing_20091105/en/index.html.
  33. WHO(2010).Pandemic (H1N1) 2009 – Update 87. http://www.who.int/csr/don/2010_02_12/en/index.html.
  34. Zhou, N. N., Senne, D. A., Landgraf, J. S., Swenson, S. L., Erickson, G., Rossow, K., Liu, L., Yoon, K., Krauss, S. & Webster, R. G.(1999). Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 73, 8851–8856. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021402-0
Loading
/content/journal/jgv/10.1099/vir.0.021402-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error