1887

Abstract

Despite utilizing the same avian hosts and mosquito vectors, St Louis encephalitis virus (SLEV) and West Nile virus (WNV) display dissimilar vector-infectivity and vertebrate-pathogenic phenotypes. SLEV exhibits a low oral infection threshold for mosquito vectors and is avirulent in avian hosts, producing low-magnitude viraemias. In contrast, WNV is less orally infective to mosquitoes and elicits high-magnitude viraemias in a wide range of avian species. In order to identify the genetic determinants of these different phenotypes and to assess the utility of mosquito and vertebrate cell lines for recapitulating differences observed between these viruses, reciprocal WNV and SLEV pre-membrane and envelope protein (prME) chimeric viruses were generated and growth of these mutant viruses was characterized in mammalian (Vero), avian (duck) and mosquito [ (C6/36) and (CT)] cells. In both vertebrate lines, WNV grew to 100-fold higher titres than SLEV, and growth and cytopathogenicity phenotypes, determined by chimeric phenotypes, were modulated by genetic elements outside the prME gene region. Both chimeras exhibited distinctive growth patterns from those of SLEV in C6/36 cells, indicating the role of both structural and non-structural gene regions for growth in this cell line. In contrast, growth of chimeric viruses was indistinguishable from that of virus containing homologous prME genes in CT cells, indicating that structural genetic elements could specifically dictate growth differences of these viruses in relevant vectors. These data provide genetic insight into divergent enzootic maintenance strategies that could also be useful for the assessment of emergence mechanisms of closely related flaviviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033159-0
2012-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/39.html?itemId=/content/journal/jgv/10.1099/vir.0.033159-0&mimeType=html&fmt=ahah

References

  1. Auguste A. J., Pybus O. G., Carrington C. V. 2009; Evolution and dispersal of St. Louis encephalitis virus in the Americas. Infect Genet Evol 9:709–715 [View Article][PubMed]
    [Google Scholar]
  2. Avirutnan P., Fuchs A., Hauhart R. E., Somnuke P., Youn S., Diamond M. S., Atkinson J. P. 2010; Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207:793–806 [View Article][PubMed]
    [Google Scholar]
  3. Baillie G. J., Kolokotronis S. O., Waltari E., Maffei J. G., Kramer L. D., Perkins S. L. 2008; Phylogenetic and evolutionary analyses of St. Louis encephalitis virus genomes. Mol Phylogenet Evol 47:717–728 [View Article][PubMed]
    [Google Scholar]
  4. Brackney D. E., Scott J. C., Sagawa F., Woodward J. E., Miller N. A., Schilkey F. D., Mudge J., Wilusz J., Olson K. E. other authors 2010; C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4:e856 [View Article][PubMed]
    [Google Scholar]
  5. Brault A. C., Langevin S. A., Bowen R. A., Panella N. A., Biggerstaff B. J., Miller B. R., Komar N. 2004; Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10:2161–2168[PubMed] [CrossRef]
    [Google Scholar]
  6. Brault A. C., Huang C. Y., Langevin S. A., Kinney R. M., Bowen R. A., Ramey W. N., Panella N. A., Holmes E. C., Powers A. M., Miller B. R. 2007; A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39:1162–1166 [View Article][PubMed]
    [Google Scholar]
  7. Brault A. C., Kinney R. M., Maharaj P. D., Green E. N. G., Reisen W. K., Huang C. H. 2011; Replication of the PDK-53 dengue 2 virus vaccine candidate in Aedes aegypti is modulated by a mutation in the 5′ untranslated region and amino acid substitutions in nonstructural proteins 1 and 3. Vector Borne Zoonotic Dis 11:683–689 [View Article]
    [Google Scholar]
  8. Chambers T. J., Nestorowicz A., Mason P. W., Rice C. M. 1999; Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 73:3095–3101[PubMed]
    [Google Scholar]
  9. Chao J., Ball G. H. 1976; A comparison of amino acid utilization by cell lines of Culex tarsalis and Culex pipiens . In Invertebrate Tissue Culture: Applications in Medicine, Biology and Agriculture pp. 263–266 Edited by Kurstak E., Maramorosch K. Academic Press; New York: [CrossRef]
    [Google Scholar]
  10. Charlier N., Davidson A., Dallmeier K., Molenkamp R., De Clercq E., Neyts J. 2010; Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. J Gen Virol 91:1693–1697 [View Article][PubMed]
    [Google Scholar]
  11. Chung K. M., Liszewski M. K., Nybakken G., Davis A. E., Townsend R. R., Fremont D. H., Atkinson J. P., Diamond M. S. 2006; West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 103:19111–19116 [View Article][PubMed]
    [Google Scholar]
  12. Ciota A. T., Lovelace A. O., Jones S. A., Payne A., Kramer L. D. 2007; Adaptation of two flaviviruses results in differences in genetic heterogeneity and virus adaptability. J Gen Virol 88:2398–2406 [View Article][PubMed]
    [Google Scholar]
  13. Ciota A. T., Jia Y., Payne A. F., Jerzak G., Davis L. J., Young D. S., Ehrbar D., Kramer L. D. 2009; Experimental passage of St. Louis encephalitis virus in vivo in mosquitoes and chickens reveals evolutionarily significant virus characteristics. PLoS One 4:e7876 [View Article][PubMed]
    [Google Scholar]
  14. Coffey L. L., Vasilakis N., Brault A. C., Powers A. M., Tripet F., Weaver S. C. 2008; Arbovirus evolution in vivo is constrained by host alternation. Proc Natl Acad Sci U S A 105:6970–6975 [View Article][PubMed]
    [Google Scholar]
  15. Fang Y., Ye P., Wang X., Xu X., Reisen W. 2011; Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology. J Virol Methods 173:251–258 [View Article][PubMed]
    [Google Scholar]
  16. Goddard L. B., Roth A. E., Reisen W. K., Scott T. W. 2002; Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8:1385–1391[PubMed] [CrossRef]
    [Google Scholar]
  17. Hanley K. A., Goddard L. B., Gilmore L. E., Scott T. W., Speicher J., Murphy B. R., Pletnev A. G. 2005; Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. Vector Borne Zoonotic Dis 5:1–10 [View Article][PubMed]
    [Google Scholar]
  18. Hardy J. L., Reeves W. C. 1990; Experimental studies on infection in vectors. In Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987 pp. 145–250 Edited by Reeves W. C. Sacramento, CA: California Mosquito and Vector Control Association;
    [Google Scholar]
  19. Houk E. J., Arcus Y. M., Hardy J. L., Kramer L. D. 1990; Binding of western equine encephalomyelitis virus to brush border fragments isolated from mesenteronal epithelial cells of mosquitoes. Virus Res 17:105–117 [View Article][PubMed]
    [Google Scholar]
  20. Huang C. Y.-H., Butrapet S., Pierro D. J., Chang G.-J. J., Hunt A. R., Bhamarapravati N., Gubler D. J., Kinney R. M. 2000; Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol 74:3020–3028 [View Article][PubMed]
    [Google Scholar]
  21. Hunt T. A., Urbanowski M. D., Kakani K., Law L. M., Brinton M. A., Hobman T. C. 2007; Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol 9:2756–2766 [View Article][PubMed]
    [Google Scholar]
  22. Johnson B. W., Chambers T. V., Crabtree M. B., Arroyo J., Monath T. P., Miller B. R. 2003; Growth characteristics of the veterinary vaccine candidate ChimeriVax-West Nile (WN) virus in Aedes and Culex mosquitoes. Med Vet Entomol 17:235–243 [View Article][PubMed]
    [Google Scholar]
  23. Johnson B. W., Chambers T. V., Crabtree M. B., Guirakhoo F., Monath T. P., Miller B. R. 2004; Analysis of the replication kinetics of the ChimeriVax-DEN 1, 2, 3, 4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction. Am J Trop Med Hyg 70:89–97[PubMed]
    [Google Scholar]
  24. Keene K. M., Foy B. D., Sanchez-Vargas I., Beaty B. J., Blair C. D., Olson K. E. 2004; RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae . Proc Natl Acad Sci U S A 101:17240–17245 [View Article][PubMed]
    [Google Scholar]
  25. Kinney R. M., Butrapet S., Chang G.-J. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J. 1997; Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230:300–308 [View Article][PubMed]
    [Google Scholar]
  26. Kinney R. M., Huang C. Y., Whiteman M. C., Bowen R. A., Langevin S. A., Miller B. R., Brault A. C. 2006; Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol 87:3611–3622 [View Article][PubMed]
    [Google Scholar]
  27. Komar N., Langevin S., Hinten S., Nemeth N., Edwards E., Hettler D., Davis B., Bowen R., Bunning M. 2003; Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9:311–322[PubMed] [CrossRef]
    [Google Scholar]
  28. Komar N., Langevin S., Monath T. P. 2009; Use of a surrogate chimeric virus to detect West Nile virus-neutralizing antibodies in avian and equine sera. Clin Vaccine Immunol 16:134–135 [View Article][PubMed]
    [Google Scholar]
  29. Langevin S. A., Brault A. C., Panella N. A., Bowen R. A., Komar N. 2005; Variation in virulence of West Nile virus strains for house sparrows (Passer domesticus). Am J Trop Med Hyg 72:99–102[PubMed]
    [Google Scholar]
  30. Laurent-Rolle M., Boer E. F., Lubick K. J., Wolfinbarger J. B., Carmody A. B., Rockx B., Liu W., Ashour J., Shupert W. L. other authors 2010; The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84:3503–3515 [View Article][PubMed]
    [Google Scholar]
  31. Liu W. J., Chen H. B., Wang X. J., Huang H., Khromykh A. A. 2004; Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 78:12225–12235 [View Article][PubMed]
    [Google Scholar]
  32. Liu W. J., Wang X. J., Clark D. C., Lobigs M., Hall R. A., Khromykh A. A. 2006; A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80:2396–2404 [View Article][PubMed]
    [Google Scholar]
  33. Mahmood F., Chiles R. E., Fang Y., Barker C. M., Reisen W. K. 2004; Role of nestling mourning doves and house finches as amplifying hosts of St. Louis encephalitis virus. J Med Entomol 41:965–972 [View Article][PubMed]
    [Google Scholar]
  34. Main O. M., Hardy J. L., Reeves W. C. 1977; Growth of arboviruses and other viruses in a continuous line of Culex tarsalis cells. J Med Entomol 14:107–112[PubMed] [CrossRef]
    [Google Scholar]
  35. McElroy K. L., Tsetsarkin K. A., Vanlandingham D. L., Higgs S. 2006a; Manipulation of the yellow fever virus non-structural genes 2A and 4B and the 3′non-coding region to evaluate genetic determinants of viral dissemination from the Aedes aegypti midgut. Am J Trop Med Hyg 75:1158–1164[PubMed]
    [Google Scholar]
  36. McElroy K. L., Tsetsarkin K. A., Vanlandingham D. L., Higgs S. 2006b; Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. J Gen Virol 87:2993–3001 [View Article][PubMed]
    [Google Scholar]
  37. Moudy R. M., Meola M. A., Morin L. L., Ebel G. D., Kramer L. D. 2007; A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77:365–370[PubMed]
    [Google Scholar]
  38. Pletnev A. G., Men R. 1998; Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4. Proc Natl Acad Sci U S A 95:1746–1751 [View Article][PubMed]
    [Google Scholar]
  39. Pletnev A. G., Bray M., Huggins J., Lai C. J. 1992; Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci U S A 89:10532–10536 [View Article][PubMed]
    [Google Scholar]
  40. Pripuzova N. S., Tereshkina N. V., Gmyl L. V., Dzhivanyan T. I., Rumyantsev A. A., Romanova L. Iu., Mustafina A. N., Lashkevich V. A., Karganova G. G. 2009; Safety evaluation of chimeric Langat/dengue 4 flavivirus, a live vaccine candidate against tick-borne encephalitis. J Med Virol 81:1777–1785 [View Article][PubMed]
    [Google Scholar]
  41. Reisen W. K., Chiles R. E., Green E. N., Fang Y., Mahmood F. 2003; Previous infection protects house finches from re-infection with St. Louis encephalitis virus. J Med Entomol 40:300–305 [View Article][PubMed]
    [Google Scholar]
  42. Reisen W. K., Chiles R., Martinez V., Fang Y., Green E., Clark S. 2004; Effect of dose on house finch infection with western equine encephalomyelitis and St. Louis encephalitis viruses. J Med Entomol 41:978–981 [View Article][PubMed]
    [Google Scholar]
  43. Reisen W. K., Fang Y., Martinez V. M. 2005; Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42:367–375 [View Article][PubMed]
    [Google Scholar]
  44. Reisen W. K., Fang Y., Martinez V. M. 2006; Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43:309–317 [View Article][PubMed]
    [Google Scholar]
  45. Reisen W. K., Barker C. M., Fang Y., Martinez V. M. 2008a; Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California?. J Med Entomol 45:1126–1138 [View Article][PubMed]
    [Google Scholar]
  46. Reisen W. K., Lothrop H. D., Wheeler S. S., Kennsington M., Gutierrez A., Fang Y., Garcia S., Lothrop B. 2008b; Persistent West Nile virus transmission and the apparent displacement St. Louis encephalitis virus in southeastern California, 2003-2006. J Med Entomol 45:494–508 [View Article][PubMed]
    [Google Scholar]
  47. Robbins C. S. 1973; Introduction, spread and present abundance of the house sparrow in North America. Ornithol Monogr 14:3–9 [CrossRef]
    [Google Scholar]
  48. Rossi S. L., Fayzulin R., Dewsbury N., Bourne N., Mason P. W. 2007; Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo . Virology 364:184–195 [View Article][PubMed]
    [Google Scholar]
  49. Tumban E., Mitzel D. N., Maes N. E., Hanson C. T., Whitehead S. S., Hanley K. A. 2011; Replacement of the 3′ untranslated variable region of mosquito-borne dengue virus with that of tick-borne Langat virus does not alter vector specificity. J Gen Virol 92:841–848 [CrossRef]
    [Google Scholar]
  50. Wicker J. A., Whiteman M. C., Beasley D. W. C., Davis C. T., Zhang S., Schneider B. S., Higgs S., Kinney R. M., Barrett A. D. T. 2006; A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349:245–253 [View Article][PubMed]
    [Google Scholar]
  51. Wilson J. R., de Sessions P. F., Leon M. A., Scholle F. 2008; West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 82:8262–8271 [View Article][PubMed]
    [Google Scholar]
  52. Yang M. R., Lee S. R., Oh W., Lee E. W., Yeh J. Y., Nah J. J., Joo Y. S., Shin J., Lee H. W. other authors 2008; West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol 10:165–176[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033159-0
Loading
/content/journal/jgv/10.1099/vir.0.033159-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error