1887

Abstract

Recombination plays a pivotal role in the evolutionary process of many different virus species, including retroviruses. Analysis of all human immunodeficiency virus type 1 (HIV-1) intersubtype recombinants revealed that they are more complex than described initially. Recombination frequency is higher within certain genomic regions, such as partial reverse transcriptase (), /, the first exons of /, and . A direct correlation was observed between recombination frequency and sequence similarity across the HIV-1 genome, indicating that sufficient sequence similarity is required upstream of the recombination breakpoint. This finding suggests that recombination may occur preferentially during reverse transcription through the strand displacement-assimilation model rather than the copy-choice model.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19180-0
2003-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842715.html?itemId=/content/journal/jgv/10.1099/vir.0.19180-0&mimeType=html&fmt=ahah

References

  1. Boone L. R., Skalka A. M. 1981a; Viral DNA synthesized in vitro by avian retrovirus particles permeabilized with melittin. I. Kinetics of synthesis and size of minus- and plus-strand transcripts. J Virol 37:109–116
    [Google Scholar]
  2. Boone L. R., Skalka A. M. 1981b; Viral DNA synthesized in vitro by avian retrovirus particles permeabilized with melittin. II. Evidence for a strand displacement mechanism in plus-strand synthesis. J Virol 37:117–126
    [Google Scholar]
  3. Burke D. S. 1997; Recombination in HIV: an important viral evolutionary strategy. Emerg Infect Dis 3:253–259
    [Google Scholar]
  4. Chao L. 1990; Fitness of RNA virus decreased by Muller's ratchet. Nature 348:454–455
    [Google Scholar]
  5. Clavel F., Hoggan M. D., Willey R. L., Strebel K., Martin M. A., Repaske R. 1989; Genetic recombination of human immunodeficiency virus. J Virol 63:1455–1459
    [Google Scholar]
  6. Coffin J. M. 1979; Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42:1–26
    [Google Scholar]
  7. Dougherty J. P., Temin H. M. 1988; Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J Virol 62:2817–2822
    [Google Scholar]
  8. Felsenstein J. 1993 phylip: Phylogeny Inference Package Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  9. Gao F., Robertson D. L., Morrison S. G. 8 other authors 1996; The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol 70:7013–7029
    [Google Scholar]
  10. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. 1995; Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126
    [Google Scholar]
  11. Hu W. S., Temin H. M. 1990a; Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci U S A 87:1556–1560
    [Google Scholar]
  12. Hu W. S., Temin H. M. 1990b; Retroviral recombination and reverse transcription. Science 250:1227–1233
    [Google Scholar]
  13. Iglesias-Sanchez M. J., Lopez-Galindez C. 2002; Analysis, quantification, and evolutionary consequences of HIV-1 in vitro recombination. Virology 304:392–402
    [Google Scholar]
  14. Jetzt A. E., Yu H., Klarmann G. J., Ron Y., Preston B. D., Dougherty J. P. 2000; High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 74:1234–1240
    [Google Scholar]
  15. Junghans R. P., Boone L. R., Skalka A. M. 1982; Retroviral DNA H structures: displacement-assimilation model of recombination. Cell 30:53–62
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  17. Kuiken C., Foley B., Hahn B., Marx P., McCutchan F., Mellors J. W., Mullins J., Wolinksy S., Korber B. 2000 HIV Sequence Compendium 2000 Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; Los Alamos, NM, USA:
    [Google Scholar]
  18. Negroni M., Buc H. 2001; Mechanisms of retroviral recombination. Annu Rev Genet 35:275–302
    [Google Scholar]
  19. Paraskevis D., Magiorkinis M., Paparizos V., Pavlakis G. N., Hatzakis A. 2000; Molecular characterization of a recombinant HIV type 1 isolate (A/G/E/?): unidentified regions may be derived from parental subtype E sequences. AIDS Res Hum Retroviruses 16:845–855
    [Google Scholar]
  20. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818
    [Google Scholar]
  21. Preston B. D., Poiesz B. J., Loeb L. A. 1988; Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171
    [Google Scholar]
  22. Ray S. C. 1998 simplot. Division of Infectious Diseases Johns Hopkins University School of Medicine; Baltimore, USA:
    [Google Scholar]
  23. Roberts J. D., Bebenek K., Kunkel T. A. 1988; The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173
    [Google Scholar]
  24. Robertson D. L., Hahn B. H., Sharp P. M. 1995a; Recombination in AIDS viruses. J Mol Evol 40:249–259
    [Google Scholar]
  25. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. 1995b; Recombination in HIV-1. Nature 374:124–126
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. 2002; tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504
    [Google Scholar]
  28. Sturges H. 1926; The choice of a class-interval. JASA 21:65–66
    [Google Scholar]
  29. Swofford D. L. 1998 paup*: Phylogenetic Analysis Using Parsimony (*and Other Methods), 4 edn. Sinauer Associates; Sunderland, MA, USA:
    [Google Scholar]
  30. Temin H. M. 1991; Sex and recombination in retroviruses. Trends Genet 7:71–74
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  32. Vogt P. K. 1971; Genetically stable reassortment of markers during mixed infection with avian tumor viruses. Virology 46:947–952
    [Google Scholar]
  33. Wain-Hobson S. 1993; The fastest genome evolution ever described: HIV variation in situ . Curr Opin Genet Dev 3:878–883
    [Google Scholar]
  34. Wong P. K., McCarter J. A. 1973; Genetic studies of temperature-sensitive mutants of Moloney-murine leukemia virus. Virology 53:319–326
    [Google Scholar]
  35. Worobey M., Holmes E. C. 1999; Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80:2535–2543
    [Google Scholar]
  36. Zhang J., Temin H. M. 1993; Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259:234–238
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19180-0
Loading
/content/journal/jgv/10.1099/vir.0.19180-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error