Symmetry Breaking in the Life Cycle of the Budding Yeast

  1. Brian D. Slaughter1,
  2. Sarah E. Smith1,2 and
  3. Rong Li1,2
  1. 1Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110
  2. 2Department of Molecular and Integrative Physiology, University of Kansas Medical Center , 3901 Rainbow Boulevard, Kansas City, Kansas 66160
  1. Correspondence: rli{at}stowers.org

Abstract

The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the absence of any pre-existing external asymmetry. One of these mechanisms is dependent upon interplay between the actin cytoskeleton and the Rho family GTPase Cdc42, whereas the other relies on a Cdc42 GTPase signaling network. Integral to these mechanisms appear to be positive feedback loops capable of amplifying small and stochastic asymmetries. Spatial cues, such as bud scars and pheromone gradients, orient cell polarity by modulating the regulation of the Cdc42 GTPase cycle, thereby biasing the site of asymmetry amplification.

Footnotes

  • Editors: Rong Li and Bruce Bowerman

  • Additional Perspectives on Symmetry Breaking in Biology available at www.cshperspectives.org



Also in this Collection

      | Table of Contents

      This Article

      1. Cold Spring Harb. Perspect. Biol. 1: a003384 Copyright © 2009 Cold Spring Harbor Laboratory Press; all rights reserved

      Article Category

      Updates/Comments

      1. Submit Updates/Comments
      2. No Updates/Comments published

      Subject Collections

      1. Symmetry Breaking in Biology

      Share

      In this Collection