Download citation
Download citation
link to html
Comparison of the crystal structures of two penta­dehydro­peptides containing [Delta]Phe residues, namely (Z,Z)-N-(tert-butoxy­carbonyl)­glycyl-[alpha],[beta]-phenyl­alanyl­glycyl-[alpha],[beta]-phenyl­alanyl­glycine (or Boc0-Gly1-[Delta]ZPhe2-Gly3-[Delta]ZPhe4-Gly5-OH) methanol solvate, C29H33N5O8·CH4O, (I), and (E,E)-N-(tert-butoxy­carbonyl)­glycyl-[alpha],[beta]-phenyl­alanyl­glycyl-[alpha],[beta]-phenyl­alanyl­glycine (or Boc0-Gly1-[Delta]EPhe2-Gly3-[Delta]EPhe4-Gly5-OH), C29H33N5O8, (II), indicates that the [Delta]ZPhe residue is a more effective inducer of folded structures than the [Delta]EPhe residue. The values of the torsion angles [varphi] and [psi] show the presence of two type-III' [beta]-turns at the [Delta]ZPhe residues and one type-II [beta]-turn at the [Delta]EPhe residue. All amino acids are linked trans to each other in both peptides. [beta]-Turns present in the peptides are stabilized by intra­molecular 4[rightwards arrow]1 hydrogen bonds. Mol­ecules in both structures form two-dimensional hydrogen-bond networks parallel to the (100) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110003094/sk3358sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003094/sk3358Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003094/sk3358IIsup3.hkl
Contains datablock II

CCDC references: 774082; 774083

Comment top

α,β-Dehydroamino acid residues contain a double bond between the Cα and Cβ atoms. Due to this structural feature they have the capacity to induce ordered structures in peptides. These structures depend on the type, content and mutual location of Δ-amino acid residues in the peptide sequence. The conformation-stabilizing effect is very pronounced in the case of the ΔPhe residue. The presence of one or more ΔPhe residues results in the β-turn conformation in short peptides (Główka et al., 1987; Główka, 1988; Aubry et al., 1984) and the 310 helical arrangement in longer ones (Rajashankar et al., 1992; Padmanabhan & Singh, 1993; Rajashankar, Ramakumar, Jain & Chauhan, 1995; Rajashankar, Ramakumar, Mal et al., 1995; Jain et al., 1997). The preferred values for the torsion angles ϕ and ψ fall predominantly into the regions of 80 and 0, 60 and 140, and 60 and 30°, respectively, and their enantiomeric values (Singh & Kaur, 1996).

This paper follows previous research on the conformational preferences of ΔPhe residues (Makowski et al., 2006, and references therein). We present the structures of two pentadehydropeptides with two ΔPhe residues: Boc0–Gly1–ΔZPhe2–Gly3–ΔZPhe4–Gly5–OH, (I), and Boc0–Gly1–ΔEPhe2–Gly3–ΔEPhe4–Gly5–OH, (II). The peptides differ only in the configuration of the ΔPhe residues. Both peptides crystallize in the same space group, P21/c, with one molecule in the asymmetric unit. Additionally, peptide (I) cocrystallizes with one molecule of methanol in the asymmetric unit. A comparison of the crystal structures of both peptides will allow evaluation of the impact of individual ΔPhe isomers on the conformational preferences of the peptides. The atom labelling is the same in both structures.

All amino acids, in both structures, are linked trans to each other. The deviations from ideal ω = 180° do not exceed 10°. Blocking groups adopt transoidal conformations, as indicated by the values of the ω0 (N1—C5—O1—C1) and ϕ0 (C6—N1—C5—O1) torsion angles (Table 1). The Cα—Cβ distances (C8C9 and C19C20) are classical double-bond lengths (Tables 1 and 3) and correspond well to the results of other X-ray studies of dehydropeptides (Główka et al., 1987; Ejsmont et al., 2001; Makowski et al. 2005).

Because of the unsaturated character of the Cα—Cβ bond, the side chains of the ΔPhe residues are much closer to the main-chain atoms compared with their saturated counterparts. This feature results in some geometric distortions characteristic of dehydropeptide structures (Główka et al., 1987). Systematic shortening of the N—Cα (N2—C8 and N4—C19), Cα—Cβ (C8—C16 and C19—C27) and Cβ—Cγ (C9—C10 and C20—C21) single bonds and simultaneous elongation of the CO double bonds (C16—O4 and C27—O6) (Table 1 and 3) is observed, which may be caused by extended delocalization of the π electron system. The values of the N2—C8–C16 [118.8 (2) and 114.67 (18)° for (I) and (II), respectively] and N4—C19—C27 [117.1 (2) and 114.04 (18)° for (I) and (II), respectively] bond angles are smaller than the regular trigonal value of 120°, which is clearly understandable owing to the steric interactions between the main chain and the side chains of ΔPhe. It is interesting that these effects influence analogous angles in both peptides to the same extent, regardless of the location of aromatic rings.

Another characteristic consequence of the short distance between aromatic rings and the peptide chain is a considerable opening of the valence angles Cα—Cβ—Cγ to relax the steric strain (Główka, 1988). This trend explains the increased values of the Cα—Cβ—Cγ bond angles for both structures. These angles are the same in both ΔPhe residues in each structure and agree to within standard deviation between (I) and (II). In the case of (I), these angles for ΔZPhe2 and ΔZPhe4 are C8—C9—C10 = 131.4 (3)° and C19—C20—C21 = 131.4 (3)°, respectively, and for ΔEPhe2 and ΔEPhe4 of (II) they are C8—C9—C10 = 129.9 (2)° and C19—C20—C21 = 129.9 (2)°, respectively. The torsion angles χ2 = -176.9 (2)° and χ4 = -176.0 (2)° between N—Cα and the aromatic system, and χ2,1 = -155.1 (3)°, χ2,2 = 25.4 (4)°, χ4,1 = 20.7 (4)° and χ4,2 = -159.7 (2)° indicate that in the case of (II) the side chains of both ΔPhe residues are almost planar, while for (I) the torsion angles χ4 = 0.2 (5)°, χ4,1 = -19.8 (5)° and χ4,2 = 162.9 (3)° show that only the side chain of ΔPhe4 is planar. The ΔPhe2 residue side chain adopts the trans-(-)gauche conformation, with torsion angles χ2,1 = -152.6 (3)° and χ2,2 = 30.8 (5)°.

The presence of two ΔZPhe residues in (I) induces the occurrence of two overlapping β-turns. The first is formed by the ΔZPhe2 and Gly3 residues, with torsion angles ϕ2 = 50.4 (4)° and ψ2 = 20.0 (4)°, and ϕ3 = 54.7 (4)° and ψ3 = 26.7 (4)°, respectively. The second turn includes the Gly3 and ΔZPhe4 residues, with torsion angles ϕ3 = 50.4 (4)° and ψ3 = 20.0 (4)°, and ϕ4 = 68.7 (3)° and ψ4 = 17.4 (4)°, respectively. The torsion angles indicate that these β-turns are of the III' type (Lewis et al., 1973). They are stabilized by 41 hydrogen bonds between the NH group of ΔZPhe4 and the CO group of Gly1, and the NH group of Gly5 and the CO group of ΔZPhe2 (Table 2). The two β-turns of III' type in (I) are the same as in the previously reported crystal structure of the Boc0–Gly1–ΔZPhe2–Gly3–ΔZPhe4–Gly5–OMe pentapeptide, which differs from (I) only in the methanolate group at the C terminus (Makowski et al., 2007). The molecular structure of peptide (I) is presented in Fig. 1(a) and its packing diagram in Fig. 2.

The situation is somewhat different in the case of (II). There is only one β-turn at the ΔEPhe2 and Gly3 residues, stabilized by a 41 hydrogen bond between the NH group of ΔEPhe4 and the CO group of Gly1 (Table 2). This β-turn is additionally stabilized by a C—H···π interaction. The ϕ and ψ angles values of these residues are 33.2 (3) and -119.6 (2)°, and -83.2 (3) and -5.3 (3)°, respectively. These values correspond well with a type II β-turn (Lewis et al., 1973). Deviations from the ideal torsion angles for this β-turn (-60 and 120°, and 80 and 0°) are not larger than 26°, while the maximum acceptable deviation is 40° (Lewis et al., 1973). In addition, the C-terminal amino acid residues adopt a conformation similar to a type IV β-turn. The whole structure is stabilized by inter- and intramolecular hydrogen bonds of various types, namely O—H···O, N—H···O and C—H···π (Table 4). However, the conformational constraints are not sufficient for a second β-turn to be formed. The molecular structure of peptide (II) is presented in Fig. 1(b).

A comparison of (I) and (II) reveals that a ΔZPhe residue is a more effective inducer of folded structures than a ΔEPhe residue. The insertion of two ΔZPhe residues in (I) gives rise to the formation of two β-turns and the structure is stabilized by two intramolecular 41 hydrogen bonds. In the case of (II), there is only one β-turn stabilized by a hydrogen bond and the resulting conformation is more distorted, and this is reflected in the greater deviations from ideal dihedral angles for the β-turns. The previously reported crystal structure of a closely related peptide, Boc–Gly–ΔZPhe–Gly–ΔEPhe–Gly–OMe (Makowski et al., 2006), shows that in the case of a ΔEPhe4 residue the formation of a second β-turn is hindered and deviations from ideal values for the torsion angles ϕ and ψ are increased. A type-II β-turn for the ΔZPhe2 and Gly3 residues, and a type-IV β-turn for Gly3 and ΔEPhe4, was observed. The ΔEPhe4 residue in (II) does not induce a β-turn, as in the case of Boc0–Gly1–ΔZPhe2–Gly3–ΔEPhe4–Gly5–OMe. A β-turn at the ΔEPhe4 residue has been observed for Boc0–Gly1–ΔZPhe2–Gly3–ΔEPhe4–Phe5-p-NA.EtOH (Makowski et al., 2005), due to the presence of the additional H-atom donor, p-nitroaniline, which forms a hydrogen bond with the CO group of Gly3.

The atypical location of the H atom of the C-terminal carboxylic group, H8, merits further discussion. In (II) it is directed to the opposite side compared with the analogous atom in (I). Atoms O8 in both molecules take part in hydrogen bonds, where they act as both donors and acceptors. In the case of (II), atom H8 participates in the strong intermolecular hydrogen bond N2—H2···O8(1 - x, y - 1/2, 1/2 - z) (Table 4). The formation of this bond requires a relocation of the H atom. The packing diagram of (I) reveals that atom O8 is involved in a much weaker intermolecular interaction, C6—H6A···O8(1 - x, 1/2 + y, 1/2 - z), than in (II), where the intermolecular N2—H2···O8(1 - x, 1/2 + y, 1/2 - z) hydrogen bond occurs. What is more, the amide-group atom H2 of another molecule of (II) in that hydrogen bond corresponds to the position of the carboxyl-group H atom in (I). Therefore, we suspect here some competition between the O8—H8 covalent bond and the N2—H2···O8(1 - x, y - 1/2, 1/2 - z) hydrogen bond which results in moving atom H8 to the alternative position.

Further information can be derived from a detailed analysis of the packing diagrams of both molecules. The crystal structure stabilizing effect compensates for the energy loss resulting from the unusual position of the H atom in (II). Additionally, the position of atom H8 in (II) is stabilized by another hydrogen bond, O8—H8···O2(x, 1/2 - y, 1/2 + z). In the case of (I), the location of atom H8 is also stabilized by two hydrogen bonds. However, one of those bonds, with O8 as an acceptor, is considerably weaker than the other (Table 4). The unusual position of the hydroxyl H atom is rarely encountered. As reported recently, it occurs when additional stabilization is provided by other interactions (Videnova-Adrabinska et al., 2007). In the discussed case the H atom switches its orientation to approach the lone pair of another hydroxyl O atom.

Experimental top

Both compounds were obtained from their methyl esters. The syntheses of the methyl esters of (I) and (II) have been described by Latajka et al. (2008). For the preparation of Boc–Gly–ΔZPhe–Gly–ΔZPhe–Gly–OH, (I), Boc–Gly–ΔZPhe–Gly–ΔZPhe–Gly–OMe (0.059 g, 0.1 mmol) was dissolved in MeOH (1.5 ml) and then H2O (0.1 ml) and 1 M NaOH (0.3 ml, 0.3 mmol) were added. The reaction was carried out for 30 min at room temperature. The reaction mixture was then acidified to pH 3 and brine (ca 10 ml, Concentration?) was added. The mixture was extracted with EtOAc (5 × 3 ml). The acetate extracts were washed with 0.5 M HCl (2 × 2 ml) and brine (2 × 2 ml, Concentration?), and dried over anhydrous MgSO4. After removal of EtOAc in vacuo, Boc–Gly–ΔZPhe–Gly–ΔZPhe–Gly–OH, (I), was crystallized from EtOAc/hexane [Solvent ratio?] [yield 0.056 g, 97%; m.p. 474-477 K (decomposition)]. Elemental analysis for C29H33N5O8: calculated: C 60.09, H 5.74, N 12.08%; found: C 59.89, H 5.98, N 12.12%. Boc–Gly–ΔEPhe–Gly–ΔEPhe–Gly–OH, (II), was obtained from its methyl ester in the same way [yield 0.054 g, 94%; m.p. 474-477 K (decomposition)]. Elemental analysis for C29H33N5O8: calculated: C 60.09, H 5.74, N 12.08%; found: C 60.33, H 5.87, N 11.89%. Both compounds were recrystallized from a mixture of MeOH and EtOAc [Solvent ratio? EtOAc/hexane stated for (I) above?].

Refinement top

H atoms bonded to C atoms were placed in geometrically optimized positions and treated as riding, with C—H = 0.95 (aromatic), 0.98 (methyl) or 0.99 Å (methylene). H atoms belonging to the amide and hydroxy groups were initially located in difference Fourier maps and in the final refinement their positions were geometrically optimized and treated as riding, with N—H = 0.88 Å and O—H = 0.84 Å. For all H atoms except the methyl groups of (II), Uiso(H) = 1.2Ueq(C,N,O). For the methyl groups of (II), Uiso(H) = 1.5Ueq(C)

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: XP in SHELXTL (Sheldrick, 2008) for (I); Mercury (Macrae et al., 2006) and SHELXTL (Sheldrick, 2008) for (II). For both compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of peptides (I) (left) and (II) (right), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram for peptide (I). Hydrogen bonds are represented by dashed lines. Symmetry codes are as given in Table 2.
(I) (Z,Z)-N-(tert- butoxycarbonyl)glycylphenylalanylglycylphenylalanylglycine methanol solvate top
Crystal data top
C29H33N5O8·CH4OF(000) = 1296
Mr = 611.65Dx = 1.341 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 11531 reflections
a = 14.075 (4) Åθ = 4–67°
b = 16.577 (5) ŵ = 0.84 mm1
c = 14.041 (4) ÅT = 100 K
β = 112.34 (3)°Plate, colourless
V = 3030.2 (17) Å30.3 × 0.2 × 0.01 mm
Z = 4
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
5247 independent reflections
Radiation source: fine-focus sealed tube3735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω and ϕ scansθmax = 67.5°, θmin = 4.3°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2003); analytical numeric absorption correction using a multifaceted crystal model based on the expressions derived by Clark & Reid (1995)]
h = 1216
Tmin = 0.842, Tmax = 0.966k = 1919
22848 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.1323P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.205(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.42 e Å3
5247 reflectionsΔρmin = 0.39 e Å3
404 parameters
Crystal data top
C29H33N5O8·CH4OV = 3030.2 (17) Å3
Mr = 611.65Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.075 (4) ŵ = 0.84 mm1
b = 16.577 (5) ÅT = 100 K
c = 14.041 (4) Å0.3 × 0.2 × 0.01 mm
β = 112.34 (3)°
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
5247 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2003); analytical numeric absorption correction using a multifaceted crystal model based on the expressions derived by Clark & Reid (1995)]
3735 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.966Rint = 0.099
22848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
5247 reflectionsΔρmin = 0.39 e Å3
404 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26814 (18)0.72365 (14)0.36833 (19)0.0280 (5)
H10.28730.67440.39090.034*
C60.3470 (2)0.78181 (17)0.3745 (2)0.0278 (6)
H6A0.37240.80820.44290.033*
H6B0.31810.82390.32130.033*
C70.4351 (2)0.73926 (17)0.3581 (2)0.0246 (6)
O30.44855 (15)0.66627 (11)0.37249 (15)0.0272 (5)
N20.49897 (17)0.78791 (13)0.33221 (18)0.0248 (5)
H20.48390.83960.32250.030*
C80.5894 (2)0.75947 (16)0.3199 (2)0.0270 (6)
C160.5812 (2)0.68712 (16)0.2521 (2)0.0267 (6)
O40.65949 (15)0.64671 (12)0.26314 (16)0.0312 (5)
C90.6805 (2)0.79664 (17)0.3586 (2)0.0285 (6)
H90.73170.77340.33840.034*
C100.7155 (2)0.86709 (18)0.4268 (2)0.0307 (7)
C110.7957 (2)0.91261 (19)0.4184 (3)0.0356 (7)
H110.82470.89770.36990.043*
C120.8330 (3)0.9799 (2)0.4812 (3)0.0398 (8)
H120.88621.01150.47400.048*
C130.7932 (3)1.0008 (2)0.5536 (3)0.0372 (8)
H130.81811.04710.59550.045*
C140.7166 (2)0.95404 (19)0.5650 (2)0.0349 (7)
H140.69110.96740.61670.042*
C150.6771 (2)0.88835 (19)0.5022 (2)0.0352 (7)
H150.62370.85740.50990.042*
N30.48911 (18)0.66704 (13)0.18267 (18)0.0265 (5)
H30.43650.69970.17020.032*
C170.4762 (2)0.59103 (16)0.1277 (2)0.0281 (6)
H17A0.51540.59330.08230.034*
H17B0.40270.58450.08320.034*
C180.5110 (2)0.51739 (16)0.1972 (2)0.0255 (6)
O50.53758 (15)0.45555 (11)0.16629 (16)0.0292 (5)
N40.50751 (17)0.52488 (13)0.29175 (18)0.0250 (5)
H40.48190.56900.30750.030*
C190.5450 (2)0.46189 (16)0.3666 (2)0.0259 (6)
C270.6582 (2)0.44742 (17)0.4102 (2)0.0259 (6)
O60.69518 (16)0.38476 (12)0.45894 (16)0.0329 (5)
C200.4865 (2)0.41800 (17)0.4030 (2)0.0274 (6)
H200.52320.37870.45250.033*
C210.3759 (2)0.41981 (18)0.3798 (2)0.0312 (7)
C220.3116 (2)0.48491 (19)0.3350 (3)0.0351 (7)
H220.33920.53200.31650.042*
C230.2075 (2)0.4816 (2)0.3170 (3)0.0394 (8)
H230.16430.52610.28620.047*
C240.1668 (3)0.4133 (2)0.3440 (3)0.0417 (8)
H240.09520.41020.32960.050*
C250.2300 (3)0.3498 (2)0.3916 (3)0.0466 (9)
H250.20270.30390.41290.056*
C260.3328 (3)0.3529 (2)0.4084 (3)0.0406 (8)
H260.37550.30830.44020.049*
N50.71833 (18)0.50571 (14)0.39857 (19)0.0280 (6)
H50.69110.54990.36430.034*
C280.8285 (2)0.49550 (19)0.4429 (2)0.0319 (7)
H28A0.84860.47810.51530.038*
H28B0.86110.54850.44340.038*
C290.8706 (2)0.43573 (18)0.3882 (2)0.0299 (7)
O70.95460 (16)0.40587 (14)0.42783 (17)0.0399 (6)
O80.80713 (15)0.42104 (13)0.29250 (16)0.0345 (5)
H80.82900.38160.26920.041*
C50.1673 (2)0.74092 (17)0.3299 (2)0.0282 (6)
O20.13123 (15)0.80698 (12)0.29598 (17)0.0343 (5)
O10.11127 (15)0.67657 (12)0.33329 (16)0.0316 (5)
C10.0021 (2)0.6782 (2)0.2818 (2)0.0344 (7)
C20.0322 (2)0.5933 (2)0.2988 (3)0.0414 (8)
H2A0.00230.55480.26520.050*
H2B0.10720.58830.26940.050*
H2C0.00660.58200.37280.050*
C30.0321 (2)0.6939 (2)0.1677 (3)0.0378 (8)
H3A0.01510.74970.15740.045*
H3B0.10610.68520.13180.045*
H3C0.00560.65690.14030.045*
C40.0467 (2)0.7379 (2)0.3358 (3)0.0420 (8)
H4A0.02780.79290.32420.050*
H4B0.01920.72660.40990.050*
H4C0.12160.73290.30830.050*
O90.70230 (17)0.24213 (14)0.36859 (19)0.0431 (6)
H9M0.70510.28730.39670.052*
C300.8004 (3)0.2062 (2)0.4068 (3)0.0416 (8)
H30A0.80020.15840.36550.050*
H30B0.81810.19020.47870.050*
H30C0.85130.24490.40260.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0224 (13)0.0219 (12)0.0376 (13)0.0006 (9)0.0091 (10)0.0056 (10)
C60.0279 (15)0.0197 (15)0.0375 (16)0.0004 (11)0.0141 (12)0.0048 (12)
C70.0196 (14)0.0242 (15)0.0272 (14)0.0015 (10)0.0058 (11)0.0009 (11)
O30.0309 (11)0.0154 (10)0.0372 (11)0.0009 (7)0.0153 (9)0.0027 (8)
N20.0215 (12)0.0135 (11)0.0396 (13)0.0010 (8)0.0119 (10)0.0010 (9)
C80.0289 (15)0.0145 (14)0.0416 (16)0.0024 (10)0.0179 (13)0.0025 (12)
C160.0284 (15)0.0174 (14)0.0361 (15)0.0017 (11)0.0143 (12)0.0040 (11)
O40.0295 (11)0.0202 (11)0.0479 (12)0.0039 (8)0.0194 (9)0.0021 (9)
C90.0282 (15)0.0233 (15)0.0373 (16)0.0025 (11)0.0161 (13)0.0007 (12)
C100.0249 (15)0.0222 (15)0.0416 (17)0.0016 (11)0.0089 (13)0.0007 (12)
C110.0342 (17)0.0316 (17)0.0450 (18)0.0040 (13)0.0195 (14)0.0008 (14)
C120.0383 (18)0.0304 (18)0.052 (2)0.0102 (13)0.0192 (15)0.0024 (15)
C130.0383 (18)0.0273 (17)0.0419 (18)0.0041 (13)0.0106 (14)0.0050 (13)
C140.0303 (16)0.0341 (17)0.0368 (16)0.0013 (13)0.0087 (13)0.0015 (13)
C150.0288 (16)0.0311 (17)0.0452 (18)0.0009 (12)0.0137 (13)0.0005 (14)
N30.0314 (13)0.0137 (12)0.0357 (13)0.0028 (9)0.0144 (11)0.0014 (10)
C170.0353 (17)0.0172 (14)0.0331 (15)0.0041 (11)0.0145 (13)0.0020 (11)
C180.0236 (14)0.0173 (14)0.0361 (15)0.0003 (10)0.0119 (12)0.0018 (12)
O50.0333 (11)0.0159 (10)0.0401 (11)0.0008 (8)0.0161 (9)0.0010 (8)
N40.0271 (13)0.0145 (12)0.0341 (13)0.0050 (9)0.0124 (10)0.0039 (9)
C190.0276 (15)0.0163 (14)0.0326 (15)0.0006 (11)0.0101 (12)0.0020 (11)
C270.0244 (15)0.0218 (15)0.0305 (14)0.0034 (11)0.0092 (11)0.0006 (11)
O60.0363 (12)0.0233 (11)0.0382 (12)0.0061 (9)0.0130 (9)0.0065 (9)
C200.0303 (16)0.0197 (14)0.0310 (15)0.0033 (11)0.0102 (12)0.0016 (11)
C210.0306 (16)0.0285 (16)0.0355 (15)0.0048 (12)0.0136 (13)0.0023 (12)
C220.0320 (17)0.0285 (17)0.0482 (19)0.0044 (12)0.0192 (14)0.0008 (14)
C230.0304 (17)0.0370 (19)0.053 (2)0.0014 (13)0.0190 (15)0.0077 (15)
C240.0325 (18)0.045 (2)0.050 (2)0.0096 (14)0.0193 (15)0.0148 (16)
C250.043 (2)0.040 (2)0.059 (2)0.0176 (15)0.0219 (17)0.0028 (16)
C260.0354 (18)0.0336 (18)0.0495 (19)0.0081 (13)0.0126 (15)0.0045 (15)
N50.0230 (13)0.0208 (13)0.0389 (14)0.0009 (9)0.0103 (10)0.0026 (10)
C280.0246 (15)0.0317 (17)0.0397 (17)0.0032 (12)0.0128 (13)0.0008 (13)
C290.0292 (16)0.0220 (15)0.0390 (16)0.0021 (11)0.0136 (13)0.0033 (12)
O70.0271 (12)0.0421 (14)0.0474 (13)0.0066 (9)0.0106 (10)0.0023 (10)
O80.0303 (12)0.0306 (12)0.0396 (12)0.0015 (9)0.0097 (9)0.0064 (9)
C50.0293 (16)0.0222 (15)0.0333 (15)0.0010 (11)0.0121 (12)0.0004 (12)
O20.0273 (11)0.0247 (11)0.0497 (13)0.0021 (8)0.0132 (10)0.0066 (9)
O10.0189 (10)0.0271 (11)0.0454 (12)0.0008 (8)0.0084 (9)0.0079 (9)
C10.0204 (15)0.0388 (19)0.0417 (18)0.0010 (12)0.0093 (13)0.0046 (14)
C20.0261 (17)0.0394 (19)0.053 (2)0.0076 (13)0.0088 (15)0.0083 (15)
C30.0311 (17)0.0366 (18)0.0415 (18)0.0014 (13)0.0091 (14)0.0009 (14)
C40.0276 (17)0.047 (2)0.054 (2)0.0010 (14)0.0178 (15)0.0052 (16)
O90.0377 (13)0.0291 (13)0.0552 (14)0.0024 (9)0.0096 (11)0.0091 (10)
C300.0344 (18)0.0390 (19)0.0472 (19)0.0036 (14)0.0109 (15)0.0016 (15)
Geometric parameters (Å, º) top
N1—C51.344 (4)C20—H200.9500
N1—C61.448 (4)C21—C261.395 (4)
N1—H10.8800C21—C221.395 (4)
C6—C71.519 (4)C22—C231.390 (4)
C6—H6A0.9900C22—H220.9500
C6—H6B0.9900C23—C241.386 (5)
C7—O31.229 (3)C23—H230.9500
C7—N21.355 (4)C24—C251.376 (5)
N2—C81.428 (3)C24—H240.9500
N2—H20.8800C25—C261.376 (5)
C8—C91.339 (4)C25—H250.9500
C8—C161.508 (4)C26—H260.9500
C16—O41.248 (3)N5—C281.445 (4)
C16—N31.334 (4)N5—H50.8800
C9—C101.471 (4)C28—C291.506 (4)
C9—H90.9500C28—H28A0.9900
C10—C111.400 (4)C28—H28B0.9900
C10—C151.404 (5)C29—O71.206 (4)
C11—C121.394 (5)C29—O81.323 (4)
C11—H110.9500O8—H80.8400
C12—C131.379 (5)C5—O21.225 (3)
C12—H120.9500C5—O11.338 (3)
C13—C141.386 (4)O1—C11.481 (3)
C13—H130.9500C1—C21.514 (5)
C14—C151.379 (4)C1—C31.516 (5)
C14—H140.9500C1—C41.520 (5)
C15—H150.9500C2—H2A0.9800
N3—C171.453 (4)C2—H2B0.9800
N3—H30.8800C2—H2C0.9800
C17—C181.523 (4)C3—H3A0.9800
C17—H17A0.9900C3—H3B0.9800
C17—H17B0.9900C3—H3C0.9800
C18—O51.226 (3)C4—H4A0.9800
C18—N41.353 (4)C4—H4B0.9800
N4—C191.433 (4)C4—H4C0.9800
N4—H40.8800O9—C301.410 (4)
C19—C201.336 (4)O9—H9M0.8400
C19—C271.493 (4)C30—H30A0.9800
C27—O61.244 (3)C30—H30B0.9800
C27—N51.335 (4)C30—H30C0.9800
C20—C211.465 (4)
C5—N1—C6123.5 (2)C26—C21—C22117.8 (3)
C5—N1—H1118.3C26—C21—C20117.5 (3)
C6—N1—H1118.3C22—C21—C20124.6 (3)
N1—C6—C7109.5 (2)C23—C22—C21120.6 (3)
N1—C6—H6A109.8C23—C22—H22119.7
C7—C6—H6A109.8C21—C22—H22119.7
N1—C6—H6B109.8C24—C23—C22120.0 (3)
C7—C6—H6B109.8C24—C23—H23120.0
H6A—C6—H6B108.2C22—C23—H23120.0
O3—C7—N2123.6 (3)C25—C24—C23120.0 (3)
O3—C7—C6121.0 (2)C25—C24—H24120.0
N2—C7—C6115.3 (2)C23—C24—H24120.0
C7—N2—C8123.2 (2)C24—C25—C26119.9 (3)
C7—N2—H2118.4C24—C25—H25120.1
C8—N2—H2118.4C26—C25—H25120.1
C9—C8—N2124.0 (3)C25—C26—C21121.6 (3)
C9—C8—C16117.0 (3)C25—C26—H26119.2
N2—C8—C16118.8 (2)C21—C26—H26119.2
O4—C16—N3121.6 (3)C27—N5—C28119.3 (2)
O4—C16—C8119.8 (3)C27—N5—H5120.4
N3—C16—C8118.6 (3)C28—N5—H5120.4
C8—C9—C10131.4 (3)N5—C28—C29115.0 (3)
C8—C9—H9114.3N5—C28—H28A108.5
C10—C9—H9114.3C29—C28—H28A108.5
C11—C10—C15118.9 (3)N5—C28—H28B108.5
C11—C10—C9117.0 (3)C29—C28—H28B108.5
C15—C10—C9124.1 (3)H28A—C28—H28B107.5
C12—C11—C10119.9 (3)O7—C29—O8123.9 (3)
C12—C11—H11120.0O7—C29—C28122.8 (3)
C10—C11—H11120.0O8—C29—C28113.3 (3)
C13—C12—C11120.4 (3)C29—O8—H8109.5
C13—C12—H12119.8O2—C5—O1124.4 (3)
C11—C12—H12119.8O2—C5—N1124.4 (3)
C12—C13—C14119.8 (3)O1—C5—N1111.3 (2)
C12—C13—H13120.1C5—O1—C1120.6 (2)
C14—C13—H13120.1O1—C1—C2102.7 (2)
C15—C14—C13120.7 (3)O1—C1—C3109.5 (2)
C15—C14—H14119.7C2—C1—C3110.1 (3)
C13—C14—H14119.7O1—C1—C4109.9 (3)
C14—C15—C10120.2 (3)C2—C1—C4109.5 (3)
C14—C15—H15119.9C3—C1—C4114.4 (3)
C10—C15—H15119.9C1—C2—H2A109.5
C16—N3—C17119.7 (2)C1—C2—H2B109.5
C16—N3—H3120.1H2A—C2—H2B109.5
C17—N3—H3120.1C1—C2—H2C109.5
N3—C17—C18114.2 (2)H2A—C2—H2C109.5
N3—C17—H17A108.7H2B—C2—H2C109.5
C18—C17—H17A108.7C1—C3—H3A109.5
N3—C17—H17B108.7C1—C3—H3B109.5
C18—C17—H17B108.7H3A—C3—H3B109.5
H17A—C17—H17B107.6C1—C3—H3C109.5
O5—C18—N4123.6 (3)H3A—C3—H3C109.5
O5—C18—C17120.7 (3)H3B—C3—H3C109.5
N4—C18—C17115.6 (2)C1—C4—H4A109.5
C18—N4—C19120.8 (2)C1—C4—H4B109.5
C18—N4—H4119.6H4A—C4—H4B109.5
C19—N4—H4119.6C1—C4—H4C109.5
C20—C19—N4124.6 (3)H4A—C4—H4C109.5
C20—C19—C27118.2 (3)H4B—C4—H4C109.5
N4—C19—C27117.1 (2)C30—O9—H9M109.5
O6—C27—N5121.3 (3)O9—C30—H30A109.5
O6—C27—C19121.2 (3)O9—C30—H30B109.5
N5—C27—C19117.5 (2)H30A—C30—H30B109.5
C19—C20—C21131.4 (3)O9—C30—H30C109.5
C19—C20—H20114.3H30A—C30—H30C109.5
C21—C20—H20114.3H30B—C30—H30C109.5
C5—N1—C6—C7146.2 (3)C18—N4—C19—C20114.3 (3)
N1—C6—C7—O321.7 (4)C18—N4—C19—C2768.7 (3)
N1—C6—C7—N2161.6 (2)C20—C19—C27—O617.4 (4)
O3—C7—N2—C80.6 (4)N4—C19—C27—O6165.4 (3)
C6—C7—N2—C8176.0 (3)C20—C19—C27—N5159.8 (3)
C7—N2—C8—C9134.9 (3)N4—C19—C27—N517.4 (4)
C7—N2—C8—C1650.4 (4)N4—C19—C20—C210.2 (5)
C9—C8—C16—O426.3 (4)C27—C19—C20—C21177.2 (3)
N2—C8—C16—O4158.7 (3)C19—C20—C21—C26162.9 (3)
C9—C8—C16—N3155.0 (3)C19—C20—C21—C2219.8 (5)
N2—C8—C16—N320.0 (4)C26—C21—C22—C231.8 (5)
N2—C8—C9—C105.8 (5)C20—C21—C22—C23179.2 (3)
C16—C8—C9—C10179.4 (3)C21—C22—C23—C240.2 (5)
C8—C9—C10—C11152.6 (3)C22—C23—C24—C252.1 (5)
C8—C9—C10—C1530.8 (5)C23—C24—C25—C262.8 (5)
C15—C10—C11—C122.8 (5)C24—C25—C26—C211.1 (5)
C9—C10—C11—C12179.6 (3)C22—C21—C26—C251.1 (5)
C10—C11—C12—C131.7 (5)C20—C21—C26—C25178.7 (3)
C11—C12—C13—C140.9 (5)O6—C27—N5—C280.5 (4)
C12—C13—C14—C152.3 (5)C19—C27—N5—C28177.7 (2)
C13—C14—C15—C101.2 (5)C27—N5—C28—C2973.0 (4)
C11—C10—C15—C141.4 (5)N5—C28—C29—O7161.4 (3)
C9—C10—C15—C14178.0 (3)N5—C28—C29—O820.0 (4)
O4—C16—N3—C178.2 (4)C6—N1—C5—O20.3 (5)
C8—C16—N3—C17170.5 (2)C6—N1—C5—O1179.9 (2)
C16—N3—C17—C1854.7 (4)O2—C5—O1—C18.4 (4)
N3—C17—C18—O5155.0 (3)N1—C5—O1—C1171.3 (2)
N3—C17—C18—N426.7 (4)C5—O1—C1—C2176.4 (3)
O5—C18—N4—C196.2 (4)C5—O1—C1—C359.4 (4)
C17—C18—N4—C19175.6 (2)C5—O1—C1—C467.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O2i0.841.752.587 (3)172
N1—H1···O6ii0.882.252.903 (3)131
N4—H4···O30.881.992.860 (3)168
N5—H5···O40.882.082.927 (3)162
O9—H9M···O60.841.872.703 (3)173
N1—H1···O30.882.382.691 (3)101
N4—H4···N30.882.422.769 (3)104
N5—H5···N40.882.432.788 (3)105
C20—H20···O3ii0.952.453.246 (4)141
C9—H9···O40.952.402.786 (4)104
C3—H3A···O20.982.432.982 (4)115
C4—H4A···O20.982.432.993 (4)116
C3—H3B···Cg1iii0.982.943.735 (4)138
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2.
(II) (E,E)-N-(tert- butoxycarbonyl)glycylphenylalanylglycylphenylalanylglycine top
Crystal data top
C29H33N5O8F(000) = 1224
Mr = 579.60Dx = 1.279 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 13457 reflections
a = 13.520 (6) Åθ = 3–75°
b = 22.9220 (11) ŵ = 0.79 mm1
c = 9.795 (5) ÅT = 100 K
β = 97.41 (5)°Plate, colourless
V = 3010 (2) Å30.38 × 0.25 × 0.04 mm
Z = 4
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
5975 independent reflections
Radiation source: fine-focus sealed tube3955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω and ϕ scansθmax = 77.0°, θmin = 3.3°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
h = 1713
Tmin = 0.760, Tmax = 0.970k = 2528
24796 measured reflectionsl = 1110
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.081P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.40 e Å3
5975 reflectionsΔρmin = 0.35 e Å3
383 parameters
Crystal data top
C29H33N5O8V = 3010 (2) Å3
Mr = 579.60Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.520 (6) ŵ = 0.79 mm1
b = 22.9220 (11) ÅT = 100 K
c = 9.795 (5) Å0.38 × 0.25 × 0.04 mm
β = 97.41 (5)°
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
5975 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
3955 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.970Rint = 0.065
24796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
5975 reflectionsΔρmin = 0.35 e Å3
383 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18930 (12)0.02617 (7)0.32654 (16)0.0332 (4)
O20.27891 (12)0.03990 (6)0.14823 (15)0.0329 (4)
O30.47050 (13)0.06921 (6)0.36639 (17)0.0377 (4)
O40.68886 (13)0.09537 (7)0.45643 (16)0.0354 (4)
O50.57399 (13)0.25010 (7)0.61951 (17)0.0367 (4)
O60.36644 (13)0.26125 (6)0.72963 (15)0.0335 (4)
O70.48750 (13)0.36462 (7)0.40241 (17)0.0373 (4)
O80.41320 (13)0.43985 (6)0.48633 (15)0.0313 (4)
H80.36900.44530.53780.038*
N10.33318 (15)0.01923 (7)0.32839 (19)0.0298 (4)
H10.31620.03830.39980.036*
N20.57253 (14)0.02591 (7)0.23082 (19)0.0288 (4)
H20.58550.00700.19030.035*
N30.62427 (14)0.16869 (7)0.31908 (18)0.0274 (4)
H30.59550.17870.23670.033*
N40.48193 (14)0.18150 (7)0.49652 (18)0.0267 (4)
H40.48040.15530.43060.032*
N50.36192 (15)0.28390 (7)0.50378 (18)0.0282 (4)
H50.36210.27030.41980.034*
C40.0573 (2)0.04341 (12)0.1347 (3)0.0426 (6)
H4A0.10250.04870.06510.064*
H4B0.00440.06530.10760.064*
H4C0.04160.00190.14230.064*
C30.14534 (19)0.12760 (10)0.2637 (3)0.0395 (6)
H3A0.18330.13850.35210.059*
H3B0.08890.15430.24240.059*
H3C0.18870.13000.19110.059*
C20.03742 (19)0.06070 (12)0.3806 (3)0.0415 (6)
H2A0.01740.01990.38920.062*
H2B0.02190.08470.35400.062*
H2C0.07170.07440.46910.062*
C10.10681 (18)0.06553 (10)0.2721 (2)0.0340 (5)
C50.26754 (18)0.01776 (9)0.2601 (2)0.0285 (5)
C60.43026 (18)0.02841 (9)0.2879 (2)0.0305 (5)
H6A0.42300.04280.19180.037*
H6B0.46560.05880.34750.037*
C70.49235 (17)0.02727 (9)0.2985 (2)0.0271 (5)
C80.63803 (17)0.07373 (9)0.2197 (2)0.0262 (5)
C160.65184 (17)0.11318 (9)0.3429 (2)0.0264 (5)
C90.68645 (18)0.07879 (9)0.1112 (2)0.0315 (5)
H90.67110.04980.04230.038*
C100.76042 (18)0.12244 (9)0.0808 (2)0.0322 (5)
C110.7713 (2)0.13282 (10)0.0571 (3)0.0387 (6)
H110.73240.11110.12730.046*
C120.8380 (2)0.17431 (12)0.0929 (3)0.0465 (7)
H120.84390.18100.18720.056*
C130.8955 (2)0.20571 (11)0.0067 (3)0.0470 (7)
H130.94080.23430.01830.056*
C140.88711 (19)0.19542 (11)0.1434 (3)0.0428 (6)
H140.92700.21700.21270.051*
C150.82074 (18)0.15368 (10)0.1811 (3)0.0364 (5)
H150.81670.14650.27580.044*
C170.64069 (19)0.21258 (9)0.4258 (2)0.0318 (5)
H17A0.64440.25120.38130.038*
H17B0.70630.20510.48060.038*
C180.56340 (18)0.21567 (9)0.5223 (2)0.0285 (5)
C190.39926 (17)0.18566 (9)0.5699 (2)0.0261 (5)
C270.37569 (17)0.24722 (9)0.6110 (2)0.0263 (5)
C200.34466 (17)0.13843 (9)0.5897 (2)0.0273 (5)
H200.36880.10290.55650.033*
C210.25360 (18)0.13316 (9)0.6546 (2)0.0289 (5)
C220.1872 (2)0.17864 (10)0.6733 (3)0.0399 (6)
H220.19940.21650.63980.048*
C230.1050 (2)0.16924 (12)0.7394 (3)0.0480 (7)
H230.06110.20070.75100.058*
C240.0850 (2)0.11438 (12)0.7896 (3)0.0448 (6)
H240.02870.10840.83670.054*
C250.14818 (19)0.06867 (11)0.7701 (2)0.0373 (6)
H250.13530.03090.80380.045*
C260.22985 (17)0.07764 (9)0.7019 (2)0.0302 (5)
H260.27120.04540.68650.036*
C280.34691 (18)0.34526 (9)0.5243 (2)0.0283 (5)
H28A0.35030.35330.62410.034*
H28B0.27960.35640.48000.034*
C290.42374 (18)0.38177 (9)0.4653 (2)0.0283 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0392 (9)0.0284 (8)0.0331 (8)0.0021 (7)0.0093 (7)0.0077 (7)
O20.0459 (10)0.0230 (8)0.0315 (8)0.0001 (7)0.0113 (7)0.0056 (6)
O30.0482 (10)0.0198 (8)0.0485 (10)0.0050 (7)0.0193 (8)0.0104 (7)
O40.0519 (10)0.0236 (8)0.0297 (8)0.0043 (7)0.0015 (8)0.0056 (6)
O50.0489 (10)0.0262 (8)0.0355 (9)0.0064 (7)0.0075 (8)0.0109 (7)
O60.0595 (11)0.0172 (7)0.0255 (8)0.0016 (7)0.0117 (8)0.0007 (6)
O70.0482 (10)0.0249 (8)0.0427 (10)0.0011 (7)0.0203 (8)0.0026 (7)
O80.0500 (10)0.0126 (7)0.0336 (8)0.0012 (6)0.0140 (7)0.0002 (6)
N10.0405 (11)0.0174 (8)0.0325 (10)0.0005 (8)0.0082 (8)0.0051 (7)
N20.0407 (11)0.0128 (8)0.0338 (10)0.0013 (8)0.0085 (9)0.0005 (7)
N30.0407 (11)0.0145 (8)0.0273 (9)0.0007 (8)0.0054 (8)0.0013 (7)
N40.0399 (11)0.0138 (8)0.0272 (9)0.0029 (8)0.0076 (8)0.0043 (7)
N50.0464 (12)0.0147 (8)0.0247 (9)0.0009 (8)0.0091 (8)0.0006 (7)
C40.0439 (15)0.0477 (15)0.0358 (13)0.0069 (12)0.0040 (11)0.0025 (11)
C30.0411 (14)0.0271 (12)0.0507 (15)0.0024 (11)0.0075 (12)0.0041 (11)
C20.0389 (14)0.0490 (15)0.0377 (13)0.0035 (12)0.0087 (11)0.0060 (11)
C10.0361 (13)0.0307 (12)0.0344 (12)0.0014 (10)0.0016 (10)0.0056 (10)
C50.0382 (13)0.0171 (10)0.0306 (11)0.0033 (9)0.0064 (10)0.0012 (8)
C60.0426 (13)0.0162 (10)0.0337 (12)0.0020 (9)0.0085 (10)0.0014 (8)
C70.0389 (13)0.0156 (10)0.0274 (11)0.0013 (9)0.0069 (10)0.0000 (8)
C80.0353 (12)0.0145 (9)0.0291 (11)0.0006 (9)0.0053 (9)0.0008 (8)
C160.0357 (12)0.0173 (10)0.0272 (11)0.0017 (9)0.0077 (9)0.0033 (8)
C90.0421 (13)0.0191 (10)0.0345 (12)0.0004 (9)0.0091 (11)0.0040 (9)
C100.0382 (13)0.0211 (10)0.0390 (13)0.0026 (10)0.0117 (10)0.0025 (9)
C110.0472 (15)0.0276 (12)0.0443 (14)0.0027 (11)0.0180 (12)0.0011 (10)
C120.0538 (17)0.0361 (14)0.0542 (16)0.0008 (13)0.0243 (14)0.0062 (12)
C130.0427 (15)0.0278 (13)0.074 (2)0.0024 (11)0.0228 (14)0.0051 (13)
C140.0352 (14)0.0312 (13)0.0636 (18)0.0021 (11)0.0121 (13)0.0074 (12)
C150.0345 (13)0.0282 (12)0.0479 (14)0.0019 (10)0.0104 (11)0.0039 (11)
C170.0464 (14)0.0144 (10)0.0355 (12)0.0060 (9)0.0091 (11)0.0036 (9)
C180.0411 (13)0.0156 (9)0.0285 (11)0.0016 (9)0.0029 (10)0.0009 (8)
C190.0410 (13)0.0150 (10)0.0233 (10)0.0018 (9)0.0074 (10)0.0008 (8)
C270.0402 (13)0.0139 (10)0.0262 (11)0.0004 (9)0.0090 (10)0.0021 (8)
C200.0382 (12)0.0144 (9)0.0294 (11)0.0005 (9)0.0044 (10)0.0000 (8)
C210.0385 (13)0.0171 (10)0.0314 (11)0.0010 (9)0.0055 (10)0.0007 (8)
C220.0481 (15)0.0204 (11)0.0535 (15)0.0051 (11)0.0157 (13)0.0030 (10)
C230.0503 (16)0.0329 (14)0.0653 (18)0.0102 (12)0.0248 (14)0.0028 (12)
C240.0461 (15)0.0385 (14)0.0538 (16)0.0029 (12)0.0212 (13)0.0034 (12)
C250.0417 (14)0.0307 (12)0.0399 (13)0.0031 (11)0.0073 (11)0.0046 (10)
C260.0357 (12)0.0193 (10)0.0356 (12)0.0003 (9)0.0047 (10)0.0007 (9)
C280.0430 (13)0.0130 (10)0.0307 (11)0.0006 (9)0.0115 (10)0.0017 (8)
C290.0444 (13)0.0155 (10)0.0255 (11)0.0007 (9)0.0068 (10)0.0004 (8)
Geometric parameters (Å, º) top
O1—C51.326 (3)C6—H6A0.9900
O1—C11.479 (3)C6—H6B0.9900
O2—C51.235 (3)C8—C91.324 (3)
O3—C71.226 (2)C8—C161.500 (3)
O4—C161.229 (3)C9—C101.472 (3)
O5—C181.231 (3)C9—H90.9500
O6—C271.228 (3)C10—C151.392 (3)
O7—C291.189 (3)C10—C111.398 (4)
O8—C291.357 (2)C11—C121.387 (4)
O8—H80.8400C11—H110.9500
N1—C51.342 (3)C12—C131.371 (4)
N1—C61.435 (3)C12—H120.9500
N1—H10.8800C13—C141.379 (4)
N2—C71.342 (3)C13—H130.9500
N2—C81.422 (3)C14—C151.394 (4)
N2—H20.8800C14—H140.9500
N3—C161.338 (3)C15—H150.9500
N3—C171.447 (3)C17—C181.498 (3)
N3—H30.8800C17—H17A0.9900
N4—C181.349 (3)C17—H17B0.9900
N4—C191.408 (3)C19—C201.338 (3)
N4—H40.8800C19—C271.512 (3)
N5—C271.339 (3)C20—C211.462 (3)
N5—C281.439 (2)C20—H200.9500
N5—H50.8800C21—C221.403 (3)
C4—C11.511 (3)C21—C261.406 (3)
C4—H4A0.9800C22—C231.374 (4)
C4—H4B0.9800C22—H220.9500
C4—H4C0.9800C23—C241.389 (4)
C3—C11.521 (3)C23—H230.9500
C3—H3A0.9800C24—C251.380 (4)
C3—H3B0.9800C24—H240.9500
C3—H3C0.9800C25—C261.377 (3)
C2—C11.510 (4)C25—H250.9500
C2—H2A0.9800C26—H260.9500
C2—H2B0.9800C28—C291.506 (3)
C2—H2C0.9800C28—H28A0.9900
C6—C71.524 (3)C28—H28B0.9900
C5—O1—C1121.59 (17)C15—C10—C9124.0 (2)
C29—O8—H8109.5C11—C10—C9118.0 (2)
C5—N1—C6121.64 (19)C12—C11—C10120.9 (2)
C5—N1—H1119.2C12—C11—H11119.5
C6—N1—H1119.2C10—C11—H11119.5
C7—N2—C8124.78 (18)C13—C12—C11120.6 (3)
C7—N2—H2117.6C13—C12—H12119.7
C8—N2—H2117.6C11—C12—H12119.7
C16—N3—C17121.46 (19)C12—C13—C14119.4 (3)
C16—N3—H3119.3C12—C13—H13120.3
C17—N3—H3119.3C14—C13—H13120.3
C18—N4—C19123.23 (18)C13—C14—C15120.8 (3)
C18—N4—H4118.4C13—C14—H14119.6
C19—N4—H4118.4C15—C14—H14119.6
C27—N5—C28120.81 (18)C10—C15—C14120.3 (2)
C27—N5—H5119.6C10—C15—H15119.8
C28—N5—H5119.6C14—C15—H15119.8
C1—C4—H4A109.5N3—C17—C18115.72 (19)
C1—C4—H4B109.5N3—C17—H17A108.4
H4A—C4—H4B109.5C18—C17—H17A108.4
C1—C4—H4C109.5N3—C17—H17B108.4
H4A—C4—H4C109.5C18—C17—H17B108.4
H4B—C4—H4C109.5H17A—C17—H17B107.4
C1—C3—H3A109.5O5—C18—N4121.9 (2)
C1—C3—H3B109.5O5—C18—C17119.8 (2)
H3A—C3—H3B109.5N4—C18—C17118.27 (19)
C1—C3—H3C109.5C20—C19—N4120.54 (19)
H3A—C3—H3C109.5C20—C19—C27125.2 (2)
H3B—C3—H3C109.5N4—C19—C27114.04 (18)
C1—C2—H2A109.5O6—C27—N5123.84 (19)
C1—C2—H2B109.5O6—C27—C19123.15 (18)
H2A—C2—H2B109.5N5—C27—C19112.95 (18)
C1—C2—H2C109.5C19—C20—C21129.9 (2)
H2A—C2—H2C109.5C19—C20—H20115.1
H2B—C2—H2C109.5C21—C20—H20115.1
O1—C1—C2102.10 (18)C22—C21—C26116.9 (2)
O1—C1—C4110.1 (2)C22—C21—C20125.7 (2)
C2—C1—C4111.0 (2)C26—C21—C20117.3 (2)
O1—C1—C3110.02 (19)C23—C22—C21121.0 (2)
C2—C1—C3110.8 (2)C23—C22—H22119.5
C4—C1—C3112.4 (2)C21—C22—H22119.5
O2—C5—O1125.1 (2)C22—C23—C24121.0 (2)
O2—C5—N1123.5 (2)C22—C23—H23119.5
O1—C5—N1111.42 (19)C24—C23—H23119.5
N1—C6—C7111.97 (18)C25—C24—C23119.1 (2)
N1—C6—H6A109.2C25—C24—H24120.4
C7—C6—H6A109.2C23—C24—H24120.4
N1—C6—H6B109.2C26—C25—C24120.2 (2)
C7—C6—H6B109.2C26—C25—H25119.9
H6A—C6—H6B107.9C24—C25—H25119.9
O3—C7—N2123.5 (2)C25—C26—C21121.8 (2)
O3—C7—C6121.6 (2)C25—C26—H26119.1
N2—C7—C6114.83 (18)C21—C26—H26119.1
C9—C8—N2120.41 (19)N5—C28—C29111.92 (19)
C9—C8—C16124.8 (2)N5—C28—H28A109.2
N2—C8—C16114.67 (18)C29—C28—H28A109.2
O4—C16—N3123.1 (2)N5—C28—H28B109.2
O4—C16—C8121.43 (19)C29—C28—H28B109.2
N3—C16—C8115.48 (18)H28A—C28—H28B107.9
C8—C9—C10129.9 (2)O7—C29—O8120.0 (2)
C8—C9—H9115.1O7—C29—C28126.64 (19)
C10—C9—H9115.1O8—C29—C28113.32 (19)
C15—C10—C11118.0 (2)
C5—O1—C1—C2179.9 (2)C9—C10—C15—C14178.3 (2)
C5—O1—C1—C462.0 (3)C13—C14—C15—C101.2 (4)
C5—O1—C1—C362.4 (3)C16—N3—C17—C1883.2 (3)
C1—O1—C5—O21.6 (3)C19—N4—C18—O55.6 (3)
C1—O1—C5—N1179.64 (19)C19—N4—C18—C17172.19 (19)
C6—N1—C5—O210.7 (3)N3—C17—C18—O5176.9 (2)
C6—N1—C5—O1170.52 (18)N3—C17—C18—N45.3 (3)
C5—N1—C6—C762.2 (3)C18—N4—C19—C20148.9 (2)
C8—N2—C7—O35.0 (3)C18—N4—C19—C2735.8 (3)
C8—N2—C7—C6176.33 (19)C28—N5—C27—O67.8 (4)
N1—C6—C7—O317.4 (3)C28—N5—C27—C19174.9 (2)
N1—C6—C7—N2163.93 (18)C20—C19—C27—O657.6 (3)
C7—N2—C8—C9151.2 (2)N4—C19—C27—O6127.3 (2)
C7—N2—C8—C1633.2 (3)C20—C19—C27—N5119.7 (2)
C17—N3—C16—O42.9 (3)N4—C19—C27—N555.4 (3)
C17—N3—C16—C8175.0 (2)N4—C19—C20—C21176.0 (2)
C9—C8—C16—O4112.9 (3)C27—C19—C20—C211.2 (4)
N2—C8—C16—O462.5 (3)C19—C20—C21—C2220.7 (4)
C9—C8—C16—N365.0 (3)C19—C20—C21—C26159.7 (2)
N2—C8—C16—N3119.6 (2)C26—C21—C22—C232.2 (4)
N2—C8—C9—C10176.9 (2)C20—C21—C22—C23178.1 (2)
C16—C8—C9—C101.8 (4)C21—C22—C23—C240.0 (4)
C8—C9—C10—C1525.4 (4)C22—C23—C24—C251.2 (4)
C8—C9—C10—C11155.1 (3)C23—C24—C25—C260.1 (4)
C15—C10—C11—C121.9 (4)C24—C25—C26—C212.2 (4)
C9—C10—C11—C12178.5 (2)C22—C21—C26—C253.3 (3)
C10—C11—C12—C130.6 (4)C20—C21—C26—C25177.0 (2)
C11—C12—C13—C140.5 (4)C27—N5—C28—C29122.3 (2)
C12—C13—C14—C150.2 (4)N5—C28—C29—O73.7 (3)
C11—C10—C15—C142.2 (3)N5—C28—C29—O8178.31 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30.882.072.867 (2)150
O8—H8···O2i0.841.762.602 (3)177
N2—H2···O8ii0.882.122.926 (2)152
N1—H1···O4iii0.881.932.782 (2)163
N5—H5···O6iv0.882.012.886 (3)178
N3—H3···O5iv0.881.992.721 (2)139
C2—H2C···Cg10.982.873.851 (4)176
C28—H28B···Cg1iv0.992.813.647 (3)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC29H33N5O8·CH4OC29H33N5O8
Mr611.65579.60
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)14.075 (4), 16.577 (5), 14.041 (4)13.520 (6), 22.9220 (11), 9.795 (5)
β (°) 112.34 (3) 97.41 (5)
V3)3030.2 (17)3010 (2)
Z44
Radiation typeCu KαCu Kα
µ (mm1)0.840.79
Crystal size (mm)0.3 × 0.2 × 0.010.38 × 0.25 × 0.04
Data collection
DiffractometerOxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2003); analytical numeric absorption correction using a multifaceted crystal model based on the expressions derived by Clark & Reid (1995)]
Analytical
(CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.842, 0.9660.760, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
22848, 5247, 3735 24796, 5975, 3955
Rint0.0990.065
(sin θ/λ)max1)0.5990.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.205, 1.03 0.053, 0.140, 1.00
No. of reflections52475975
No. of parameters404383
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.390.40, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
N2—C81.428 (3)N4—C191.433 (4)
C8—C91.339 (4)C19—C201.336 (4)
C8—C161.508 (4)C19—C271.493 (4)
C16—O41.248 (3)C27—O61.244 (3)
C9—C101.471 (4)C20—C211.465 (4)
N2—C8—C16118.8 (2)N4—C19—C27117.1 (2)
C8—C9—C10131.4 (3)C19—C20—C21131.4 (3)
N1—C6—C7—N2161.6 (2)N3—C17—C18—N426.7 (4)
C6—C7—N2—C8176.0 (3)C17—C18—N4—C19175.6 (2)
C7—N2—C8—C1650.4 (4)C18—N4—C19—C2768.7 (3)
N2—C8—C16—N320.0 (4)N4—C19—C27—N517.4 (4)
N2—C8—C9—C105.8 (5)C19—C27—N5—C28177.7 (2)
C8—C9—C10—C11152.6 (3)C27—N5—C28—C2973.0 (4)
C8—C9—C10—C1530.8 (5)C6—N1—C5—O1179.9 (2)
C8—C16—N3—C17170.5 (2)N1—C5—O1—C1171.3 (2)
C16—N3—C17—C1854.7 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O2i0.841.752.587 (3)172
N1—H1···O6ii0.882.252.903 (3)131
N4—H4···O30.881.992.860 (3)168
N5—H5···O40.882.082.927 (3)162
O9—H9M···O60.841.872.703 (3)173
N1—H1···O30.882.382.691 (3)101
N4—H4···N30.882.422.769 (3)104
N5—H5···N40.882.432.788 (3)105
C20—H20···O3ii0.952.453.246 (4)141
C9—H9···O40.952.402.786 (4)104
C3—H3A···O20.982.432.982 (4)115
C4—H4A···O20.982.432.993 (4)116
C3—H3B···Cg1iii0.982.943.735 (4)138
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
O4—C161.229 (3)C8—C161.500 (3)
O6—C271.228 (3)C9—C101.472 (3)
N2—C81.422 (3)C19—C201.338 (3)
N4—C191.408 (3)C19—C271.512 (3)
C8—C91.324 (3)C20—C211.462 (3)
N2—C8—C16114.67 (18)N4—C19—C27114.04 (18)
C8—C9—C10129.9 (2)C19—C20—C21129.9 (2)
C1—O1—C5—N1179.64 (19)C8—C9—C10—C11155.1 (3)
C6—N1—C5—O1170.52 (18)C16—N3—C17—C1883.2 (3)
C8—N2—C7—C6176.33 (19)C19—N4—C18—C17172.19 (19)
N1—C6—C7—N2163.93 (18)N3—C17—C18—N45.3 (3)
C7—N2—C8—C1633.2 (3)C18—N4—C19—C2735.8 (3)
C17—N3—C16—C8175.0 (2)C28—N5—C27—C19174.9 (2)
N2—C8—C16—N3119.6 (2)N4—C19—C27—N555.4 (3)
N2—C8—C9—C10176.9 (2)C27—N5—C28—C29122.3 (2)
C8—C9—C10—C1525.4 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30.882.072.867 (2)150
O8—H8···O2i0.841.762.602 (3)177
N2—H2···O8ii0.882.122.926 (2)152
N1—H1···O4iii0.881.932.782 (2)163
N5—H5···O6iv0.882.012.886 (3)178
N3—H3···O5iv0.881.992.721 (2)139
C2—H2C···Cg10.982.873.851 (4)176
C28—H28B···Cg1iv0.992.813.647 (3)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds