organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Ethyl­phen­yl)phthalimide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: azahar70@um.edu.my

(Received 2 July 2008; accepted 3 July 2008; online 6 August 2008)

In the title compound, C16H13NO2, the phthalimide and benzene ring systems form a dihedral angle of 77.2 (1)°.

Related literature

The crystal structures of a number of phenyl-substituted N-phenyl­phthalimides have been reported. For the 2-tolyl analogue, see: Bocelli & Cantoni (1989[Bocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1658-1660.]). For the 2,4-dimethyl­phenyl analogue, see: Magnomedova et al. (1980[Magnomedova, N. S., Dzyabchenko, A. V., Zavodnik, V. E. & Bel'skii, V. K. (1980). Cryst. Struct. Commun. 9, 713-715.]); Shahzadi et al. (2006[Shahzadi, S., Ali, S., Najam-ul-Haq, M. & Wurst, K. (2006). Acta Cryst. E62, o2586-o2588.]). For the 2,6-dimethyl­phenyl and 2,4,6-trimethyl­phenyl analogues, see: Voliotis et al. (1984[Voliotis, S., Arrieta, J. M. & Germain, G. (1984). Acta Cryst. C40, 1946-1948.]). For background literature on kinetic studies, see: Sim et al. (2006[Sim, Y.-L., Ariffin, A. & Khan, M. N. (2006). Int. J. Chem. Kinet. 38, 746-758.], 2007[Sim, Y.-L., Ariffin, A. & Khan, M. N. (2007). J. Org. Chem. 72, 2392-2401.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Orthorhombic, P b c a

  • a = 15.344 (2) Å

  • b = 7.7731 (8) Å

  • c = 21.693 (2) Å

  • V = 2587.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 15518 measured reflections

  • 2961 independent reflections

  • 2204 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.01

  • 2961 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In our studies aimed at understanding the nature of intramolecular general base (IGB) and intramolecular general acid (IGA) catalysis in the hydrolysis of N-substituted phthalimides, we required the preparation of N-phenylphthalimides having a substituent at either the ortho- and/or the para-position. The title compound (I, Fig. 1) is an such an example. In (I), the phthalimido and phenylene portions are flat and are inclined at an angle of 77.2 (1)°.

Related literature top

The crystal structures of a number of phenyl-substituted N-phenylphthalimides have been reported. For the 2-tolyl analogue, see: Bocelli & Cantoni (1989). For the 2,4-dimethylphenyl analogue, see: Magnomedova et al. (1980); Shahzadi et al. (2006). For the 2,6-dimethylphenyl and 2,4,6-trimethylphenyl analogues, see: Voliotis et al. (1984). For background literature on kinetic studies, see: Sim et al. (2006, 2007).

Experimental top

Phthalic anhydride (5.0 g, 33.8 mmol) and o-ethylaniline (4.91 g, 40.5 mmol) were dissolved in glacial acetic acid (15 ml). The mixture was heated at 393–413 K for 4 h; the completion of the reaction was monitored by thin layer chromatography. The mixture was quenched with water. The solid that separated was collected and recrystallized twice from ethanol to give colorless crystals of (I) in 90% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) drawn at the 70% probability level showing atom labelling. Hydrogen atoms are drawn as spheres of arbitrary radiius.
N-(2-Ethylphenyl)phthalimide top
Crystal data top
C16H13NO2F(000) = 1056
Mr = 251.27Dx = 1.290 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2189 reflections
a = 15.344 (2) Åθ = 2.3–24.0°
b = 7.7731 (8) ŵ = 0.09 mm1
c = 21.693 (2) ÅT = 100 K
V = 2587.4 (5) Å3Irregular block, colourless
Z = 80.15 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
2204 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 1911
15518 measured reflectionsk = 1010
2961 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7719P]
where P = (Fo2 + 2Fc2)/3
2961 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H13NO2V = 2587.4 (5) Å3
Mr = 251.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.344 (2) ŵ = 0.09 mm1
b = 7.7731 (8) ÅT = 100 K
c = 21.693 (2) Å0.15 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
2204 reflections with I > 2σ(I)
15518 measured reflectionsRint = 0.054
2961 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
2961 reflectionsΔρmin = 0.19 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48223 (7)0.23894 (15)0.51820 (5)0.0271 (3)
O20.35501 (7)0.02107 (14)0.69268 (5)0.0251 (3)
N10.44007 (8)0.11973 (15)0.61157 (5)0.0171 (3)
C10.42560 (10)0.19354 (18)0.55323 (6)0.0181 (3)
C20.32925 (9)0.20247 (18)0.54575 (6)0.0166 (3)
C30.28005 (10)0.2658 (2)0.49751 (7)0.0204 (3)
H30.30660.31370.46190.024*
C40.18974 (10)0.2565 (2)0.50335 (7)0.0217 (3)
H40.15380.29790.47090.026*
C50.15121 (10)0.1874 (2)0.55597 (7)0.0226 (3)
H50.08950.18190.55860.027*
C60.20135 (10)0.12648 (19)0.60476 (7)0.0203 (3)
H60.17520.08120.64100.024*
C70.29078 (10)0.13462 (18)0.59830 (6)0.0173 (3)
C80.36106 (9)0.08198 (18)0.64160 (7)0.0176 (3)
C90.52461 (9)0.09843 (18)0.63950 (6)0.0162 (3)
C100.57623 (10)0.03944 (19)0.62150 (7)0.0201 (3)
H100.55640.11680.59070.024*
C110.65713 (10)0.0634 (2)0.64893 (7)0.0221 (3)
H110.69290.15720.63680.027*
C120.68547 (10)0.0498 (2)0.69407 (7)0.0222 (3)
H120.74050.03300.71320.027*
C130.63332 (10)0.18808 (19)0.71133 (7)0.0208 (3)
H130.65350.26530.74210.025*
C140.55168 (10)0.21587 (18)0.68431 (6)0.0174 (3)
C150.49902 (10)0.37245 (19)0.70174 (7)0.0215 (3)
H15A0.50720.39700.74620.026*
H15B0.43640.34890.69470.026*
C160.52646 (11)0.5296 (2)0.66405 (8)0.0293 (4)
H16A0.49120.62900.67630.044*
H16B0.51750.50610.62010.044*
H16C0.58820.55420.67160.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (6)0.0436 (7)0.0207 (6)0.0029 (5)0.0029 (5)0.0057 (5)
O20.0185 (6)0.0354 (6)0.0215 (5)0.0017 (5)0.0006 (5)0.0095 (5)
N10.0125 (6)0.0226 (6)0.0161 (6)0.0005 (5)0.0006 (5)0.0014 (5)
C10.0171 (8)0.0212 (7)0.0160 (7)0.0012 (6)0.0001 (6)0.0013 (6)
C20.0144 (7)0.0177 (7)0.0176 (7)0.0006 (6)0.0005 (6)0.0015 (5)
C30.0192 (8)0.0248 (8)0.0173 (7)0.0003 (6)0.0008 (6)0.0004 (6)
C40.0195 (8)0.0238 (8)0.0217 (7)0.0036 (6)0.0062 (6)0.0004 (6)
C50.0117 (7)0.0279 (8)0.0283 (8)0.0010 (6)0.0013 (6)0.0007 (7)
C60.0157 (8)0.0238 (8)0.0215 (7)0.0013 (6)0.0015 (6)0.0021 (6)
C70.0163 (7)0.0173 (7)0.0183 (7)0.0009 (6)0.0012 (6)0.0001 (6)
C80.0148 (7)0.0191 (7)0.0191 (7)0.0006 (6)0.0005 (6)0.0004 (6)
C90.0106 (7)0.0216 (7)0.0164 (7)0.0016 (6)0.0002 (6)0.0035 (5)
C100.0193 (8)0.0222 (8)0.0188 (7)0.0014 (6)0.0007 (6)0.0025 (6)
C110.0177 (8)0.0236 (8)0.0251 (8)0.0048 (6)0.0018 (6)0.0001 (6)
C120.0146 (8)0.0265 (8)0.0254 (8)0.0003 (6)0.0032 (6)0.0029 (6)
C130.0173 (8)0.0240 (8)0.0211 (7)0.0041 (6)0.0029 (6)0.0009 (6)
C140.0149 (7)0.0195 (7)0.0179 (7)0.0010 (6)0.0007 (6)0.0013 (6)
C150.0189 (8)0.0221 (8)0.0234 (7)0.0017 (6)0.0025 (6)0.0032 (6)
C160.0270 (9)0.0239 (8)0.0369 (9)0.0032 (7)0.0026 (7)0.0028 (7)
Geometric parameters (Å, º) top
O1—C11.2072 (17)C9—C101.389 (2)
O2—C81.2085 (17)C9—C141.397 (2)
N1—C11.4071 (18)C10—C111.389 (2)
N1—C81.4072 (18)C10—H100.9500
N1—C91.4412 (18)C11—C121.387 (2)
C1—C21.489 (2)C11—H110.9500
C2—C31.381 (2)C12—C131.391 (2)
C2—C71.3879 (19)C12—H120.9500
C3—C41.393 (2)C13—C141.400 (2)
C3—H30.9500C13—H130.9500
C4—C51.393 (2)C14—C151.509 (2)
C4—H40.9500C15—C161.529 (2)
C5—C61.392 (2)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C6—C71.381 (2)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.488 (2)C16—H16C0.9800
C1—N1—C8111.43 (12)C14—C9—N1119.02 (13)
C1—N1—C9124.54 (12)C9—C10—C11119.53 (14)
C8—N1—C9123.84 (11)C9—C10—H10120.2
O1—C1—N1124.87 (14)C11—C10—H10120.2
O1—C1—C2129.23 (13)C12—C11—C10119.83 (14)
N1—C1—C2105.90 (12)C12—C11—H11120.1
C3—C2—C7121.70 (14)C10—C11—H11120.1
C3—C2—C1129.94 (13)C11—C12—C13120.01 (14)
C7—C2—C1108.36 (12)C11—C12—H12120.0
C2—C3—C4117.13 (14)C13—C12—H12120.0
C2—C3—H3121.4C12—C13—C14121.41 (14)
C4—C3—H3121.4C12—C13—H13119.3
C5—C4—C3121.11 (14)C14—C13—H13119.3
C5—C4—H4119.4C9—C14—C13117.17 (13)
C3—C4—H4119.4C9—C14—C15122.84 (13)
C4—C5—C6121.31 (14)C13—C14—C15119.91 (13)
C4—C5—H5119.3C14—C15—C16111.27 (13)
C6—C5—H5119.3C14—C15—H15A109.4
C7—C6—C5117.18 (14)C16—C15—H15A109.4
C7—C6—H6121.4C14—C15—H15B109.4
C5—C6—H6121.4C16—C15—H15B109.4
C6—C7—C2121.56 (13)H15A—C15—H15B108.0
C6—C7—C8130.07 (13)C15—C16—H16A109.5
C2—C7—C8108.35 (13)C15—C16—H16B109.5
O2—C8—N1124.92 (13)H16A—C16—H16B109.5
O2—C8—C7129.13 (13)C15—C16—H16C109.5
N1—C8—C7105.95 (12)H16A—C16—H16C109.5
C10—C9—C14122.04 (13)H16B—C16—H16C109.5
C10—C9—N1118.94 (13)
C8—N1—C1—O1179.48 (14)C9—N1—C8—C7175.82 (12)
C9—N1—C1—O14.4 (2)C6—C7—C8—O20.6 (3)
C8—N1—C1—C20.23 (15)C2—C7—C8—O2178.26 (15)
C9—N1—C1—C2175.35 (12)C6—C7—C8—N1179.73 (15)
O1—C1—C2—C30.7 (3)C2—C7—C8—N10.86 (15)
N1—C1—C2—C3179.03 (14)C1—N1—C9—C1080.22 (18)
O1—C1—C2—C7179.98 (15)C8—N1—C9—C10105.25 (16)
N1—C1—C2—C70.33 (15)C1—N1—C9—C14100.51 (16)
C7—C2—C3—C40.9 (2)C8—N1—C9—C1474.03 (18)
C1—C2—C3—C4179.78 (14)C14—C9—C10—C110.5 (2)
C2—C3—C4—C50.5 (2)N1—C9—C10—C11178.73 (13)
C3—C4—C5—C60.5 (2)C9—C10—C11—C120.2 (2)
C4—C5—C6—C71.1 (2)C10—C11—C12—C130.7 (2)
C5—C6—C7—C20.7 (2)C11—C12—C13—C140.4 (2)
C5—C6—C7—C8179.48 (14)C10—C9—C14—C130.8 (2)
C3—C2—C7—C60.3 (2)N1—C9—C14—C13178.48 (12)
C1—C2—C7—C6179.72 (13)C10—C9—C14—C15176.18 (13)
C3—C2—C7—C8178.69 (13)N1—C9—C14—C154.6 (2)
C1—C2—C7—C80.73 (15)C12—C13—C14—C90.3 (2)
C1—N1—C8—O2178.51 (14)C12—C13—C14—C15176.74 (14)
C9—N1—C8—O23.3 (2)C9—C14—C15—C1692.56 (17)
C1—N1—C8—C70.66 (15)C13—C14—C15—C1684.31 (17)

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)15.344 (2), 7.7731 (8), 21.693 (2)
V3)2587.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15518, 2961, 2204
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.01
No. of reflections2961
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

The authors are grateful for a SAGA grant (No. 06-02-03-0147) supporting this study and thank the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1658–1660.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMagnomedova, N. S., Dzyabchenko, A. V., Zavodnik, V. E. & Bel'skii, V. K. (1980). Cryst. Struct. Commun. 9, 713–715.  Google Scholar
First citationShahzadi, S., Ali, S., Najam-ul-Haq, M. & Wurst, K. (2006). Acta Cryst. E62, o2586–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, Y.-L., Ariffin, A. & Khan, M. N. (2006). Int. J. Chem. Kinet. 38, 746–758.  Web of Science CrossRef CAS Google Scholar
First citationSim, Y.-L., Ariffin, A. & Khan, M. N. (2007). J. Org. Chem. 72, 2392–2401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVoliotis, S., Arrieta, J. M. & Germain, G. (1984). Acta Cryst. C40, 1946–1948.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds