organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-tert-Butyl 4-methyl 3,5-di­methyl-1H-pyrrole-2,4-di­carboxyl­ate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: me2001@hpu.edu.cn

(Received 8 April 2012; accepted 4 May 2012; online 12 May 2012)

In the title mol­ecule, C13H19NO4, except for two C atoms of the tert-butyl group, the non-H atoms are almost coplanar (r.m.s. deviation = 0.2542 Å). In the crystal, mol­ecules are linked into centrosymmetric dimers by two inter­molecular N—H⋯O hydrogen bonds, forming an R22(10) ring motif.

Related literature

For complexes of Schiff bases containing a pyrrole unit, see: Wu et al. (2003[Wu, Z. K., Chen, Q. Q., Xiong, S. X., Xin, B., Zhao, Z. W., Jiang, L. J. & Ma, J. S. (2003). Angew. Chem. Int. Ed. 42, 3271-3274.]); Wang et al. (2008[Wang, Y., Yang, Z.-Y. & Chen, Z.-N. (2008). Bioorg. Med. Chem. Lett. 18, 298-303.]). For the synthesis of the title compound, see: Sun et al. (2003[Sun, L., et al. (2003). J. Med. Chem. 46, 1116-1119.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO4

  • Mr = 253.29

  • Monoclinic, P 21 /c

  • a = 11.788 (4) Å

  • b = 17.045 (6) Å

  • c = 7.229 (2) Å

  • β = 106.420 (7)°

  • V = 1393.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.19 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.986

  • 7149 measured reflections

  • 2458 independent reflections

  • 1334 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.250

  • S = 1.02

  • 2458 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.14 2.974 (4) 165
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases containing pyrrole units have been extensively investigated due to their excellent coordination abilities (Wu et al., 2003; Wang et al., 2008). As part of our studies on bis(pyrrol-2-yl-methyleneamine) ligands, the crystal structure of the title compound is reported here.

In the title molecule (Fig. 1), except for C12 and C13 atoms of the tert-butyl, the non-hydrogen atoms are almost coplanar (r.m.s. deviation of the non-hydrogen atoms being 0.2542 Å). In the crystal, the molecules are linked into centrosymmetric dimers by two intermolecular N—H···O hydrogen bonds (Table 1), forming a R22(10) ring motif (Fig. 2).

Related literature top

For complexes of Schiff bases containing a pyrrole unit, see: Wu et al. (2003); Wang et al. (2008). For the synthesis of the title compound, see: Sun et al. (2003).

Experimental top

The 2-tert-butyl 4-methyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate was prepared by a Knorr-type reaction from the condensation of methyl acetoacetate and tert-butyl oximinoacetoacetate according to a literature method (Sun et al., 2003).

Refinement top

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.96 Å) and refined as riding with Uiso(H) =1.2Ueq(N) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The dimer of the title compounds formed via N—H···O hydrogen bonds shown as the dashed lines. Unlabelled atoms are related with the labelled ones by symmetry operation (-x, 1/2 - y, 1/2 + z).
2-tert-Butyl 4-methyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate top
Crystal data top
C13H19NO4F(000) = 544
Mr = 253.29Dx = 1.208 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1135 reflections
a = 11.788 (4) Åθ = 3.0–21.5°
b = 17.045 (6) ŵ = 0.09 mm1
c = 7.229 (2) ÅT = 296 K
β = 106.420 (7)°Plate, colorless
V = 1393.2 (8) Å30.19 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube1334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1314
Tmin = 0.983, Tmax = 0.986k = 1920
7149 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.250H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1445P)2]
where P = (Fo2 + 2Fc2)/3
2458 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H19NO4V = 1393.2 (8) Å3
Mr = 253.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.788 (4) ŵ = 0.09 mm1
b = 17.045 (6) ÅT = 296 K
c = 7.229 (2) Å0.19 × 0.18 × 0.16 mm
β = 106.420 (7)°
Data collection top
Bruker SMART CCD
diffractometer
2458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1334 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.050
7149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.250H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
2458 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1539 (4)0.4652 (3)1.0373 (8)0.1274 (19)
H1B1.09610.50631.01930.191*
H1C1.19530.46960.94090.191*
H1D1.20910.46991.16300.191*
C21.1615 (3)0.3246 (2)1.0408 (5)0.0768 (11)
C31.0936 (3)0.25230 (19)1.0199 (4)0.0587 (9)
C40.9687 (3)0.24090 (18)0.9753 (4)0.0554 (8)
C50.9521 (2)0.16057 (19)0.9724 (4)0.0586 (9)
C61.1478 (3)0.1795 (2)1.0403 (5)0.0657 (9)
C70.8755 (3)0.30226 (19)0.9401 (5)0.0692 (10)
H7A0.79920.27780.91380.104*
H7B0.87880.33370.83150.104*
H7C0.88810.33501.05210.104*
C81.2746 (3)0.1548 (3)1.0879 (7)0.0978 (14)
H8A1.27920.09861.08970.147*
H8B1.31670.17501.21230.147*
H8C1.30920.17500.99230.147*
C90.8486 (3)0.1108 (2)0.9370 (5)0.0632 (9)
C100.6297 (3)0.1201 (2)0.8529 (6)0.0735 (11)
C110.6041 (4)0.0676 (3)0.6820 (8)0.131 (2)
H11A0.65400.02220.71160.197*
H11B0.61890.09520.57530.197*
H11C0.52270.05170.64880.197*
C120.6181 (4)0.0814 (3)1.0336 (7)0.1063 (15)
H12A0.66570.03481.05840.159*
H12B0.53680.06771.01750.159*
H12C0.64430.11691.14030.159*
C130.5522 (3)0.1940 (3)0.8125 (8)0.1084 (16)
H13A0.56970.22610.92610.163*
H13B0.47030.17900.77760.163*
H13C0.56800.22290.70860.163*
O11.0949 (2)0.38906 (15)1.0199 (4)0.0925 (9)
O21.2657 (3)0.32986 (18)1.0728 (6)0.1295 (13)
O30.74888 (17)0.15373 (14)0.8891 (3)0.0713 (8)
O40.85058 (19)0.03974 (15)0.9488 (4)0.0876 (9)
N11.0615 (2)0.12471 (17)1.0127 (4)0.0674 (8)
H1A1.07300.07481.01920.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.101 (3)0.078 (3)0.197 (6)0.040 (3)0.032 (3)0.010 (3)
C20.053 (2)0.083 (3)0.088 (3)0.0142 (19)0.0105 (18)0.0009 (19)
C30.0448 (18)0.064 (2)0.066 (2)0.0079 (15)0.0136 (14)0.0011 (15)
C40.0457 (17)0.063 (2)0.0539 (18)0.0049 (14)0.0090 (13)0.0018 (14)
C50.0379 (16)0.070 (2)0.064 (2)0.0014 (14)0.0084 (13)0.0017 (16)
C60.0442 (18)0.078 (2)0.074 (2)0.0119 (16)0.0149 (15)0.0050 (16)
C70.0512 (19)0.060 (2)0.091 (2)0.0005 (16)0.0119 (17)0.0041 (17)
C80.043 (2)0.099 (3)0.146 (4)0.005 (2)0.019 (2)0.001 (3)
C90.0475 (19)0.058 (2)0.083 (2)0.0048 (15)0.0169 (16)0.0033 (17)
C100.0416 (18)0.074 (2)0.102 (3)0.0111 (16)0.0146 (17)0.009 (2)
C110.067 (3)0.164 (5)0.141 (4)0.010 (3)0.005 (3)0.062 (4)
C120.075 (3)0.098 (3)0.152 (4)0.020 (2)0.041 (3)0.009 (3)
C130.050 (2)0.110 (4)0.159 (4)0.008 (2)0.018 (2)0.002 (3)
O10.0673 (17)0.0635 (16)0.145 (3)0.0193 (14)0.0268 (16)0.0068 (15)
O20.0530 (18)0.103 (2)0.215 (4)0.0239 (15)0.0100 (19)0.007 (2)
O30.0359 (12)0.0687 (15)0.1046 (19)0.0050 (10)0.0120 (11)0.0016 (12)
O40.0523 (14)0.0607 (17)0.144 (2)0.0030 (11)0.0180 (14)0.0099 (14)
N10.0442 (15)0.0624 (16)0.093 (2)0.0020 (13)0.0149 (13)0.0030 (14)
Geometric parameters (Å, º) top
C1—O11.461 (5)C8—H8B0.9600
C1—H1B0.9600C8—H8C0.9600
C1—H1C0.9600C9—O41.215 (4)
C1—H1D0.9600C9—O31.344 (4)
C2—O21.188 (4)C10—O31.470 (4)
C2—O11.334 (4)C10—C111.486 (6)
C2—C31.454 (5)C10—C121.504 (6)
C3—C61.385 (5)C10—C131.534 (5)
C3—C41.429 (4)C11—H11A0.9600
C4—C51.383 (4)C11—H11B0.9600
C4—C71.486 (4)C11—H11C0.9600
C5—N11.382 (4)C12—H12A0.9600
C5—C91.448 (4)C12—H12B0.9600
C6—N11.354 (4)C12—H12C0.9600
C6—C81.496 (5)C13—H13A0.9600
C7—H7A0.9600C13—H13B0.9600
C7—H7B0.9600C13—H13C0.9600
C7—H7C0.9600N1—H1A0.8600
C8—H8A0.9600
O1—C1—H1B109.5O4—C9—O3124.0 (3)
O1—C1—H1C109.5O4—C9—C5125.0 (3)
H1B—C1—H1C109.5O3—C9—C5111.0 (3)
O1—C1—H1D109.5O3—C10—C11110.0 (3)
H1B—C1—H1D109.5O3—C10—C12109.5 (3)
H1C—C1—H1D109.5C11—C10—C12114.2 (4)
O2—C2—O1120.2 (4)O3—C10—C13101.7 (3)
O2—C2—C3126.4 (4)C11—C10—C13111.4 (4)
O1—C2—C3113.4 (3)C12—C10—C13109.3 (3)
C6—C3—C4108.5 (3)C10—C11—H11A109.5
C6—C3—C2121.7 (3)C10—C11—H11B109.5
C4—C3—C2129.8 (3)H11A—C11—H11B109.5
C5—C4—C3105.7 (3)C10—C11—H11C109.5
C5—C4—C7126.9 (3)H11A—C11—H11C109.5
C3—C4—C7127.4 (3)H11B—C11—H11C109.5
N1—C5—C4108.4 (3)C10—C12—H12A109.5
N1—C5—C9117.9 (3)C10—C12—H12B109.5
C4—C5—C9133.7 (3)H12A—C12—H12B109.5
N1—C6—C3107.3 (3)C10—C12—H12C109.5
N1—C6—C8120.0 (3)H12A—C12—H12C109.5
C3—C6—C8132.6 (3)H12B—C12—H12C109.5
C4—C7—H7A109.5C10—C13—H13A109.5
C4—C7—H7B109.5C10—C13—H13B109.5
H7A—C7—H7B109.5H13A—C13—H13B109.5
C4—C7—H7C109.5C10—C13—H13C109.5
H7A—C7—H7C109.5H13A—C13—H13C109.5
H7B—C7—H7C109.5H13B—C13—H13C109.5
C6—C8—H8A109.5C2—O1—C1118.1 (3)
C6—C8—H8B109.5C9—O3—C10123.8 (3)
H8A—C8—H8B109.5C6—N1—C5110.1 (3)
C6—C8—H8C109.5C6—N1—H1A124.9
H8A—C8—H8C109.5C5—N1—H1A124.9
H8B—C8—H8C109.5
O2—C2—C3—C61.3 (6)N1—C5—C9—O43.7 (5)
O1—C2—C3—C6178.8 (3)C4—C5—C9—O4176.5 (4)
O2—C2—C3—C4177.7 (4)N1—C5—C9—O3176.4 (3)
O1—C2—C3—C42.2 (5)C4—C5—C9—O33.4 (5)
C6—C3—C4—C50.6 (4)O2—C2—O1—C10.1 (6)
C2—C3—C4—C5179.7 (3)C3—C2—O1—C1179.8 (3)
C6—C3—C4—C7179.6 (3)O4—C9—O3—C102.7 (5)
C2—C3—C4—C70.6 (6)C5—C9—O3—C10177.2 (3)
C3—C4—C5—N10.2 (3)C11—C10—O3—C963.7 (5)
C7—C4—C5—N1179.9 (3)C12—C10—O3—C962.6 (4)
C3—C4—C5—C9180.0 (3)C13—C10—O3—C9178.1 (3)
C7—C4—C5—C90.2 (6)C3—C6—N1—C50.7 (4)
C4—C3—C6—N10.8 (4)C8—C6—N1—C5179.4 (3)
C2—C3—C6—N1180.0 (3)C4—C5—N1—C60.4 (4)
C4—C3—C6—C8179.3 (4)C9—C5—N1—C6179.5 (3)
C2—C3—C6—C81.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.142.974 (4)165
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC13H19NO4
Mr253.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.788 (4), 17.045 (6), 7.229 (2)
β (°) 106.420 (7)
V3)1393.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7149, 2458, 1334
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.250, 1.02
No. of reflections2458
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.142.974 (4)164.8
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

The authors are grateful for financial support from the Doctoral Foundation of Henan Polytechnic University (grant No. B2009-70 648364).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., et al. (2003). J. Med. Chem. 46, 1116–1119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y., Yang, Z.-Y. & Chen, Z.-N. (2008). Bioorg. Med. Chem. Lett. 18, 298–303.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, Z. K., Chen, Q. Q., Xiong, S. X., Xin, B., Zhao, Z. W., Jiang, L. J. & Ma, J. S. (2003). Angew. Chem. Int. Ed. 42, 3271–3274.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds