Skip to main content
Log in

Tuft cells

  • Review article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Tuft cells, also known as brush cells, are widespread in the hollow organs of the digestive tract including the duct system of the salivary gland and in the respiratory tract, from simple vertebrates to humans. The shape of tuft cells varies from pear-shaped, to barrel-shaped and goblet-shaped, apparently depending on the plane of section. The most characteristic morphological features of tuft cells are their long and blunt microvilli, which have prominent rootlets, and a well developed tubulovesicular system in the supranuclear cytoplasm. Both the microvilli and tubulovesicular system can be labeled with lectin and periodic acid-thiocarbohydrazide-silver proteinate-physical development (PA-TCH-SP-PD), suggesting a relationship between them. Many spheres observed among the microvilli seem to originate from the head of a polyp-like structure protruding into the vesicles, suggesting some type of apocrine secretion. During mammalian development, tuft cells increase around the time of weaning as neonates gradually become accustomed to solid food. Tuft cells in the rat gallbladder and stomach possess intermediate filaments, that is, neurofilaments and cytokeratin-18 filaments. Despite numerous morphological studies, the functions of tuft cells are still obscure. The discovery of the presence of α-gustducin has provided a clue to the long-sought function of tuft cells, which appear to possess the cellular and molecular basis for chemoreception. The present review discusses the three currently proposed functions of tuft cells — secretory, absorptive and receptive — on the basis of morphological, histochemical and cytochemical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius BA (1984) Glycocalyx and glycocalyceal bodies in the respiratory epithelium of nose and bronchi. Ultrastruct Pathol 7, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Allan EM (1978) The ultrastructure of the brush cell in bovine lung. Res Vet Sci 25, 314–17.

    PubMed  CAS  Google Scholar 

  • Chang LY, Merceer RR, Crapo JD (1986) Differential distribution of brush cells in the rat lung. Anat Rec 216, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Christensen TG, Breuer R, Hornstra LJ, Lucey EC, Snider GL (1987) The ultrastructure of hamster bronchial epithelium. Exp Lung Res 13, 253–77.

    Article  PubMed  CAS  Google Scholar 

  • Cutz E (1987) Cytomorphology and differentiation of airway epithelium in developing human lung. In: Lung Carcinomas (McDowell EM, ed.). Churchill Livingstone, New York, 1-41.

    Google Scholar 

  • DiMaio MF, Dische R, Gordon RE, Kattan M (1988) Alveolar brush cells in an infant with desquamative interstitial pneumonitis. Pediatr Pulmonol 4, 185–91.

    Article  PubMed  CAS  Google Scholar 

  • DiMaio MF, Kattan M, Ciurea D, Gil J, Dische R (1990) Brush cells in the human fetal trachea. Pediatr Pulmonol 8, 40–44.

    Article  PubMed  CAS  Google Scholar 

  • Ellingr A, Gruber K, Stockinger L (1994) Glycocalyceal bodies: A marker for different epithelial cell types in human airways. J Submicrosc Cytol 19, 311–20.

    Google Scholar 

  • Ferguson DJ (1969) Structure of antral mucosa. Surgery 65, 280–91.

    PubMed  CAS  Google Scholar 

  • Filippenko LN (1978) Light and electron microscopic study of rat lung brush alveolocytes in rats. Biull Eksp Biol Med 92, 616–20.

    Google Scholar 

  • Foliguet B, Grignon G (1980) Type III pneumocyte. The alveolar brush-border cell in rat lung. Study by transmission electron microscopy. Poumon Coeur 36, 149–53.

    PubMed  CAS  Google Scholar 

  • Gebhard A, Gebert A (1999) Brush cells of the mouse intestine possess a specialized glycocalyx as revealed by quantitative lectin histochemistry: Further evidence for a sensory function. J Histochem Cytochem 47, 799–808.

    PubMed  CAS  Google Scholar 

  • Ghadially FN (1985) Filamentous core rootlets and glycocalyceal bodies. In: Diagnostic Electron Microscopy of Tumor (Ghadially FN, ed.). Butterworths, London, 334-42.

    Google Scholar 

  • Gomi T, Kimura A, Kikuch Y et al. (1991) Electron-microscopic observations of the alveolar brush cell of the rat. Acta Anat 141, 294–301.

    Article  PubMed  CAS  Google Scholar 

  • Gomi T, Kimura A, Tsuchiya H, Hashimoto T, Higashi K, Sasa S (1987) Electron microscopic observations of the alveolar brush cell of the Bullfrog. Zool Sci 4, 613–20.

    Google Scholar 

  • Hammond JB, LaDeur L (1968) Fibrillovesicular cells in the fundic glands of the canine stomach: Evidence for a new cell type. Anat Rec 161, 394–412.

    Article  Google Scholar 

  • Hand AR (1981) Ultrastructure of the main excretory ducts of the rat parotid and submandibular gland. J Dent Res 60A, 395.

    Google Scholar 

  • Higashi K, Gomi T, Soeda M, Sasa S, Kimura A, Kikuchi Y (1989) New morphological aspects of the brush cells in the main excretory ducts of the rat submandibular gland. Zool Sci 6, 675–80.

    Google Scholar 

  • Hijiya K (1978) Electron microscope study of the alveolar brush cell. J Electron Microsc 27, 223–7.

    CAS  Google Scholar 

  • Hijiya K, Okada Y, Tankawa H (1977) Ultrastructural study of the alveolar brush cell. J Electron Microsc 26, 321–9.

    CAS  Google Scholar 

  • Höfer D, Drenckhahn D (1992) Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98, 237–42.

    Article  PubMed  Google Scholar 

  • Höfer D, Drenckhahn D (1996) Cytoskeletal markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells. Histochem Cell Biol 105, 405–12.

    Article  PubMed  Google Scholar 

  • Höfer D, Drenckhahn D (1998) Identification of the taste cell G-protein, α-gustducin, in brush cells of the rat pancreatic duct system. Histochem Cell Biol 110, 303–9.

    Article  PubMed  Google Scholar 

  • Höfer D, Puschel B, Drenckhahn D (1996) Taste receptor-like cells in the gut identified by expression of α-gustducin. Proc Natl Acad Sci USA 93, 6631–4.

    Article  PubMed  Google Scholar 

  • Höfer D, Shin DW, Drenckhahn D (2000) Identification of cytoskeletal markers for the different microvilli and cell types of the rat vomeronasal sensory epithelium. J Neurocytol 29, 147–56.

    Article  PubMed  Google Scholar 

  • Iseki S (1991) Postnatal development of the brush cells in the common bile duct of the rat. Cell Tissue Res 266, 507–10.

    Article  PubMed  CAS  Google Scholar 

  • Iseki S, Kanda T, Hitomi M, Ono T (1991) Ontogenic appearance of three fatty acid binding proteins in the rat stomach. Anat Rec 229, 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Iseki S, Kondo H (1990) An immunocytochemical study on the occurrence of liver fatty-acid-binding protein in the digestive organs of rats: Specific localization in the D cells and brush cells. Acta Anat 138, 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Ishida H (1977) Fine structural study on the postnatal development of the rat tracheal mucosa with special reference to the brush cells. Yokohama Med Bull 28, 123–47.

    Google Scholar 

  • Isomäki AM (1973) A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. Acta Pathol Microbiol Scand Sect A 240 (Suppl), 1–35.

    Google Scholar 

  • Ito T, Kitamura H, Inayama Y, Nozawa A, Kanisawa M (1992) Uptake and intracellular transport of cationic ferritin in the bronchiolar and alveolar epithelia of the rat. Cell. Tissue Cell Res 268, 335–40.

    Article  CAS  Google Scholar 

  • Järvi O (1961) A review of the part played by gastrointestinal heterotopias in neoplasmogenesis. Proc Finn Acad Sci (letters), 151–87.

  • Järvi O, Keyrilainen O (1955) On the cellular structures of the epithelial invasions in the glandular stomach of mice caused by intramural application of 20-methylcholanthrene. Acta Pathol Microbiol Scand 111 (Suppl), 72–3.

    Google Scholar 

  • Jeffery PK, Reid L (1975) New observations of rat airway epithelium: A quantitative and electron microscopic study. J Anat 120, 295–320.

    PubMed  CAS  Google Scholar 

  • Johnson FR, Young BA (1968) Undifferentiated cells in gastric mucosa. J Anat 102, 541–51.

    PubMed  CAS  Google Scholar 

  • Kasper M, Höfer D, Woodcock-Mitchell L et al. (1994) Colocalization of cytokeratin 18 and villin in type III alveolar cells (brush cells) of the rat lung. Histochemistry 101, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Kugler P, Höfer D, Mayer B, Drenckhahn D (1994) Nitric oxide synthase and NADP-linked glucose-6-phosphate dehydrogenase are co-localized in brush cells of rat stomach and pancreas. J Histochem Cytochem 42, 1317–21.

    PubMed  CAS  Google Scholar 

  • Leeson TS (1961) The development of the trachea in the rabbit, with particular reference to its fine structure. Anat Anz 110, 214–23.

    PubMed  CAS  Google Scholar 

  • Luciano L, Armbruckner L, Sewing KF, Real E (1993) Isolated brush cells of the rat stomach retain their structural polarity. Cell Tissue Res 271, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Castellucci M, Real E (1981) The brush cells of the common bile duct of the rat. This section, freeze-fracture and scanning electron microscopy. Cell Tissue Res 218, 403–20.

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Groos S, Reale E (2003) Brush cells of rodent gallbladder and stomach epithelia express neurofilaments. J Histochem Cytochem 51, 187–98.

    PubMed  CAS  Google Scholar 

  • Luciano L, Real E (1969) A new cell type (‘brush cell’) in the gallbladder epithelium of the mouse. J Submicrosc Cytol 1, 153–8.

    Google Scholar 

  • Luciano L, Real E (1979) A new morphological aspect of the brush cells of the mouse gallbladder epithelium. Cell Tissue Res 201, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Real E (1990) Brush cells of the mouse gallbladder. Cell Tissue Res 262, 339–49.

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Real E (1992) The ‘limiting ridge’ of the rat stomach. Arch Histol Cytol 55, 131–8.

    Article  PubMed  Google Scholar 

  • Luciano L, Real E (1997) Presence of brush cells in the mouse gallbladder. Microsc Res Techn 38, 598–608.

    Article  CAS  Google Scholar 

  • Luciano L, Real E, Ruska H (1968) Über eine ‘chemorezeptive’ Sinneszelle in der Trachea der Ratte. Z Zellforsch 85, 350–75.

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Real E, Ruska H (1969) Burstenzellen im Alveolarepithel der Rattenlunge. Z Zellforsch 95, 198–201.

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Real E, Von Engelhardt W (1980) The fine structure of the stomach mucosa of the Llama (Llama guanacoe). II. The fundic region of the hind stomach. Cell Tissue Res 208, 207–28.

    Article  PubMed  CAS  Google Scholar 

  • Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • McDowell EM, Barett LA, Glavin F, Harris CC, Trump BF (1978) The respiratory epithelium. I. Human bronchus. J Natl Cancer Inst 61, 539–45.

    PubMed  CAS  Google Scholar 

  • McLaughlin SK, McKinnon PJ, Margolskee RF (1992) Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–9.

    Article  PubMed  CAS  Google Scholar 

  • Meyrick B, Reid L (1968) The alveolar brush cell in rat lung: A third pneumonocyte. J Ultrastruct Res 23, 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Monterio-Riviere NA, Popp JA (1984) Ultrastructural characterization of the nasal respiratory epithelium in the rat. Am J Anat 169, 31–43.

    Article  Google Scholar 

  • Moxey PC, Trier JS (1978) Specialized cell types in the human fetal small intestine. Anat Rec 191, 269–86.

    Article  PubMed  CAS  Google Scholar 

  • Murayama T, Kataoka H, Koiata H, Nabeshima K, Koono M (1991) Glycocalyceal bodies in a human rectal carcinoma cell line and their intestinal collagenolytic activities. Virchows Arch B Cell Pathol 60, 263–70.

    Article  CAS  Google Scholar 

  • Nabeyama A, Leblond CP (1974) ‘Caveolated cells’ characterized by deep surface invaginations and abundant filaments in mouse gastro-intestinal epithelia. Am J Anat 140, 147–66.

    Article  PubMed  CAS  Google Scholar 

  • Nevalainen TJ (1977) Ultrastructural characteristics of tuft cells in mouse gallbladder epithelium. Acta Anat 98, 210–20.

    PubMed  CAS  Google Scholar 

  • Ogata T (2000) Mammalian tuft (brush) cells and chloride cells of other vertebrates share a similar structure and cytochemical reactivities. Acta Histochem Cytochem 33, 439–49.

    Article  CAS  Google Scholar 

  • Ohiwa K, Harada T, Morikawa TS, Nakamura T (1994) Immuno-electron microscopic localization of carcinoembryonic antigen in gastric adenocarcinoma cell lines. Pathol Int 44, 635–44.

    Article  PubMed  CAS  Google Scholar 

  • Ozzello L, Savary M, Roethlisberger B (1977) Columnar mucosa of the distal esophagus in patients with gastroesophageal reflux. Pathol Annu 12, 41–86.

    PubMed  Google Scholar 

  • Podokowa D, Goniakowska-Witalinska L (2002) Adaptations to the air breathing in the posterior intestine of the catfish (Corydoras aeneus: Callichthyidae). A histological and ultrastructural study. Folia Biol (Krakow) 50, 69–82.

    Google Scholar 

  • Raeder MG (1992) The origin of and subcellular mechanisms causing pancreatic bicarbonate secretion. Gastroenterology 103, 1674–84.

    PubMed  CAS  Google Scholar 

  • Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY (2005) The mysterious pulmonary brush cells: A cell in search of a function. Am J Respir Crit Care Med 172, 136–9.

    Article  PubMed  Google Scholar 

  • Rhodin JAG (1959) Ultrastructure of the tracheal ciliated mucosa in rat and man. Ann Otol Rhinol Laryngol 68, 964–74.

    Google Scholar 

  • Rhodin JAG (1966) Ultrastructure and function of the human tracheal mucosa. The ciliated cell. Am Rev Respir Dis 93, 1–15.

    PubMed  Google Scholar 

  • Rhodin JAG, Dalhamn D (1956) Electron microscopy of the trachea ciliated mucosa in rat. Z Zellforsch 44, 345–412.

    Article  PubMed  CAS  Google Scholar 

  • Riches DJ (1972) Ultrastructural observations on the common bile duct epithelium of the rat. J Anat 111, 157–70.

    PubMed  CAS  Google Scholar 

  • Sato A (1980) Fine structure of the main excretory duct of rat submandibular gland. Biol Cell 39, 237–40.

    Google Scholar 

  • Sato A (1982) Scanning and transmission electron microscopical study of the main excretory duct of rat major salivary glands. J Kyushu Dent Soc 36, 610–31.

    Google Scholar 

  • Sato A, Hamano M, Miyoshi S (1998) Increasing frequency of occurrence of tuft cells in the main excretory duct during postnatal development of the rat submandibular gland. Anat Rec 252, 276–80.

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Hisanaga Y, Inoue Y, Nagato T, Toh H (2002) Three-dimensional structure of apical vesicles of tuft cells in the main excretory duct of the rat submandibular gland. Eur J Morphol 40, 235–9.

    Article  PubMed  Google Scholar 

  • Sato A, Kodama J, Inoue Y, Nagato T (2004) Analysis of the tubulovesicular system of tuft cells in the main excretory duct of the rat submandibular gland by EFTEM-TEM tomography. 16th International congress of the IFAA proceedings. Anat Sci Int 79, 125.

    Google Scholar 

  • Sato A, Miyoshi S (1988) Ultrastructure of the main excretory duct epithelia of the rat parotid and submandibular glands with a review of the literature. Anat Rec 220, 239–51.

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Miyoshi S (1996) Tuft cells in the main excretory duct epithelium of the three major rat salivary glands. Eur J Morphol 34, 225–8.

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Miyoshi S (1997) Fine structure of tuft cells of the main excretory duct epithelium in the rat submandibular gland. Anat Rec 248, 325–31.

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Miyoshi S (1998a) Topographical distribution of cells in the rat submandibular gland duct system with special reference to dark cells and tuft cells. Anat Rec 252, 159–64.

    Article  CAS  Google Scholar 

  • Sato A, Miyoshi S (1998b) Cells in the duct system of the rat submandibular gland. Eur J Morphol 36, 61–6.

    Google Scholar 

  • Sato A, Suganuma T, Ide S, Kawano J, Nagato T (2000) Tuft cells in the main excretory duct of the rat submandibular gland. Eur J Morphol 38, 227–31.

    Article  PubMed  CAS  Google Scholar 

  • Sbarbati A, Merigo F, Benati D et al. (2004) Identification and characterization of a specific sensory epithelium in the rat larynx. J Comp Neurol 475, 188–201.

    Article  PubMed  Google Scholar 

  • Sbarbati A, Osculati F (2005) A new fate for old cells: Brush cells and related elements. J Anat 206, 349–58.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Lohmann S, Walter U (1993) The nitric oxide and cGMP signal-transduction pathway. Biochim Biophys Acta 1178, 153–75.

    Article  PubMed  CAS  Google Scholar 

  • Schofield GC (1970) Columnar cells with secretory granules in the large intestine of the macaque (Cynamolgus irus). J Anat 106, 1–14.

    PubMed  CAS  Google Scholar 

  • Shackleford JM, Schneyer LH (1971) Ultrastructural aspects of the main excretory of rat submandibular gland. Anat Rec 169, 693–705.

    Article  Google Scholar 

  • Silva DG (1966) The structure of multivesicular cells with large microvilli in the epithelium of the mouse colon. J Ultrastruct Res 16, 639–705.

    Google Scholar 

  • Sugimoto K, Ichikawa Y, Nakamura I (1983) Endogenous peroxidase activity in brush cell-like cells in the large intestine of the bullfrog tadpole, Rana catesbeiana. Cell Tissue Res 230, 451–61.

    Article  PubMed  CAS  Google Scholar 

  • Sweetser DA, Heuckeroth RO, Gordon JI (1987) The metabolic significance of mammalian fatty-acid-binding proteins: Abundant proteins in search of a function. Annu Rev Nutr 7, 337–57.

    Article  PubMed  CAS  Google Scholar 

  • Taira K, Shibasaki S (1978) A fine structure study of the nonciliated cells in the mouse tracheal epithelium with special reference to the relation of ‘brush cells’ and ‘endocrine cells’. Arch Histol Jpn 41, 351–66.

    PubMed  CAS  Google Scholar 

  • Thurbeck WM (1990) A rose is a rose is a rose, but what is a brush cell? Pediatr Pulmonol 8, 3.

    Article  Google Scholar 

  • Trier JS (1963) Studies on small intestinal crypt epithelium. I. The fine structure of the crypt epithelium of the proximal small intestine of fasting humans. J Cell Biol 18, 599–620.

    Article  PubMed  CAS  Google Scholar 

  • Trier JS, Allan CH, Marcial MA, Madara JL (1987) Structural features of the apical and tubulovesicular membranes of rodent small intestinal tuft cells. Anat Rec 219, 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi S, Leblond CP (1979) Migration and turnover of entero-endocrine and caveolated cells in the epithelium of the descending colon, as shown by radioautography after continuous infusion of 3H-thymidine into mice. Am J Anat 156, 431–51.

    Article  PubMed  CAS  Google Scholar 

  • Watson JH, Brinkman GL (1964) Electron microscopy of the epithelial cells of normal and bronchitic human bronchus. Am Rev Respir Dis 90, 851–66.

    PubMed  CAS  Google Scholar 

  • Wattel W, Geuze JJ (1978) The cells of the rat gastric groove and cardia. Cell Tissue Res 186, 375–91.

    Article  PubMed  CAS  Google Scholar 

  • Weyrauch KD, Schnorr B (1976) Ultrastructure of the epithelium of the major pancreatic duct in sheep. Acta Anat 96, 232–47.

    PubMed  CAS  Google Scholar 

  • Wille KH (2001) The functional morphology of the large intestinal mucosa of the ox (Bos promigenius f. taurus), sheep (Ovis ammon f. aries) and goat (Capra aegagrus f. hircus). Anat Histol Embryol 30, 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800.

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Tabata S, Crowley HH, Margolskee RF, Kinnamon JC (2000) Ultrastructural localization of gustducin immuno-reactivity in microvilli of type II cells in the rat. J Comp Neurol 425, 139–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, A. Tuft cells. Anato Sci Int 82, 187–199 (2007). https://doi.org/10.1111/j.1447-073X.2007.00188.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-073X.2007.00188.x

Key words

Navigation