Skip to main content
Log in

Centrifugal innervation of the mammalian olfactory bulb

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaiine, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137, 433–58.

    Article  PubMed  CAS  Google Scholar 

  • Bailey CH, Giustetto M, Huang Y-Y, Hawkins RD, Kandel ER (2000) Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci 1, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Balu R, Pressler RT, Strowbridge BW (2007) Multiple modes of synaptic excitation of olfactory bulb granule cells. J Neurosci 27, 5621–32.

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50, 329–40.

    Article  PubMed  CAS  Google Scholar 

  • Brennan PA, Keverne EB (1997) Neural mechanisms of mammalian olfactory learning. Prog Neurobiol 51, 457–81.

    Article  PubMed  CAS  Google Scholar 

  • Brennan PA, Schellinck HM, De La Riva C, Kendrick KM, Keverne EB (1998) Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure in mice. Neuroscience 87, 583–90.

    Article  PubMed  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65, 175–87.

    Article  PubMed  CAS  Google Scholar 

  • Castillo PE, Carleton A, Vincent J-D, Lledo P-M (1999) Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. J Neurosci 19, 9180–91.

    PubMed  CAS  Google Scholar 

  • Ciombor KJ, Ennis M, Shipley MT (1999) Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via alpha-1 receptors in vitro. Neuroscience 90, 595–606.

    Article  PubMed  CAS  Google Scholar 

  • Davis BJ, Macrides F (1981) The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: An autoradiographic study. J Comp Neurol 203, 475–93.

    Article  PubMed  CAS  Google Scholar 

  • Davis BJ, Macrides F, Youngs WM, Schneider SP, Rosene DL (1978) Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the hamster. Brain Res Bull 3, 59–72.

    Article  PubMed  CAS  Google Scholar 

  • De Carlos JA, López-Mascaraque L, Valverde F (1989) Connections of the olfactory bulb and nucleus olfactorius anterior in the hedgehog (Erinaceus europaeus): Fluorescent tracers and HRP study. J Comp Neurol 279, 601–18.

    Article  PubMed  Google Scholar 

  • Elaagouby A, Ravel N, Gervais R (1991) Cholinergic modulation of excitability in the rat olfactory bulb: Effect of local application of cholinergic agents on evoked field potentials. Neuroscience 45, 653–62.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie KM, Anderson AJ, Leon M, Gall C (1993) Odor-induced increases in c-fos mRNA expression reveal an anatomical ‘unit’ for odor processing in olfactory bulb. Proc Natl Acad Sci USA 90, 3329–33.

    Article  PubMed  CAS  Google Scholar 

  • Haberly LB (2001) Parallel-distributed processing in olfactory cortex: New insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 26, 551–76.

    Article  PubMed  CAS  Google Scholar 

  • Haberly LB, Price JL (1977) The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res 129, 152–7.

    Article  PubMed  CAS  Google Scholar 

  • Haberly LB, Price JL (1978a) Association and commissural fiber systems of the olfactory cortex of the rat. I. Systems originating in the piriform cortex and adjacent areas. J Comp Neurol 178, 711–40.

    Article  PubMed  CAS  Google Scholar 

  • Haberly LB, Price JL (1978b) Association and commissural fiber systems of the olfactory cortex of the rat. II. Systems originating in the olfactory peduncle. J Comp Neurol 181, 781–808.

    Article  PubMed  CAS  Google Scholar 

  • Halasz N, Shepherd GM (1983) Neurochemistry of the vertebrate olfactory bulb. Neuroscience 3, 579–619.

    Article  Google Scholar 

  • Hardy A, Palouzier-Paulignan B, Duchamp A, Royet J-P, Duchamp-Viret P (2005) 5-hydroxytryptamine action in the rat olfactory bulb: In vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience 131, 717–31.

    Article  PubMed  CAS  Google Scholar 

  • Hayar A, Heyward PM, Heinbockel T, Shipley MT, Ennis M (2001) Direct excitation of mitral cells via activation of α1-noradrenergic receptors in rat olfactory bulb slices. J Neurophysiol 86, 2173–82.

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Hirata Y (1986) Organization of choline acetyltransferase-containing structures in the forebrain of the rat. J Neurosci 6, 281–92.

    PubMed  CAS  Google Scholar 

  • Illig KR (2005) Projections from orbitofrontal cortex to anterior piriform cortex in the rat suggest a role in olfactory processing. J Comp Neurol 488, 224–31.

    Article  PubMed  Google Scholar 

  • Jahr CE, Nicoll RA (1982) Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature 297, 227–9.

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Griff ER, Ennis M, Zimmer LA, Shipley MT (1996) Activation of locus coeruleus enhances the responses of olfactory bulb mitral cells to weak olfactory nerve input. J Neurosci 16, 6319–29.

    PubMed  CAS  Google Scholar 

  • Johnson BA, Leon M (2000) Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J Comp Neurol 422, 496–509.

    Article  PubMed  CAS  Google Scholar 

  • Kaba H, Hayashi Y, Higuchi T, Nakanishi S (1994) Induction of an olfactory memory by the activation of a metabotropic glutamate receptor. Science 265, 262–4.

    Article  PubMed  CAS  Google Scholar 

  • Kasa P, Hlavati I, Dobo E, Wolff A, Joo F, Wolff JR (1995) Synaptic and non-synaptic cholinergic innervation of the various types of neurons in the main olfactory bulb of adult rat: Immunocytochemistry of choline acetyltransferase. Neuroscience 67, 667–77.

    Article  PubMed  CAS  Google Scholar 

  • Kay LM, Freeman WJ (1998) Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav Neurosci 112, 541–53.

    Article  PubMed  CAS  Google Scholar 

  • Kay LM, Lancaster LR, Freeman WJ (1996) Reafference and attractors in the olfactory system during odor recognition. Int J Neural Syst 7, 489–95.

    Article  PubMed  CAS  Google Scholar 

  • Kay LM, Laurent G (1999) Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci 2, 1003–9.

    Article  PubMed  CAS  Google Scholar 

  • Kimura F, Nakamura S (1985) Locus coeruleus neurons in the neonatal rat: Electrical activity and responses to sensory stimulation. Dev Brain Res 23, 301–5.

    Article  Google Scholar 

  • King C, Hall WG (1990) Developmental change in unilateral olfactory habituation is mediated by anterior commissure maturation. Behav Neurosci 104, 796–807.

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Mori K, Ojima H (1984) Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb. J Comp Neurol 225, 511–26.

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Kitai ST (1990) Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol 298, 40–9.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski D, Arnold HM, Hall WG (1995) Unilateral conditioning of an odor aversion in 6-day-old rat pups. Behav Neurosci 109, 563–6.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski D, Hall WG (1987) New routes to early memories. Science 238, 786–8.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski D, Hall WG (1988) Developmental change in the access to olfactory memories. Behav Neurosci 102, 340–8.

    Article  PubMed  CAS  Google Scholar 

  • Langdon PE, Harley CW, McLean JH (1997) Increased β adrenoceptor activation overcomes conditioned olfactory learning deficits induced by serotonin depletion. Dev Brain Res 102, 291–3.

    Article  CAS  Google Scholar 

  • Le Jeune H, Jourdan F (1993) Cholinergic innervation of olfactory glomeruli in the rat: An ultrastructural immunocytochemical study. J Comp Neurol 336, 279–92.

    Article  PubMed  Google Scholar 

  • Luskin MB, Price JL (1983) The topographic organization of associational fibers to the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol 216, 264–91.

    Article  PubMed  CAS  Google Scholar 

  • Macrides F, Schneider SP (1982) Laminar organization of mitral and tufted cells in the main olfactory bulb of the adult hamster. J Comp Neurol 208, 419–30.

    Article  PubMed  CAS  Google Scholar 

  • Mandairon N, Ferretti CJ, Stack CM, Rubin DB, Cleland TA, Linster C (2006) Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats. Eur J Neurosci 24, 3234–44.

    Article  PubMed  Google Scholar 

  • Matsutani S, Senba E, Tohyama M (1988) Neuropeptide- and neurotransmitter-related immunoreactivities in the developing rat olfactory bulb. J Comp Neurol 272, 331–42.

    Article  PubMed  CAS  Google Scholar 

  • Matsutani S, Senba E, Tohyama M (1989) Terminal field of cholecystokinin-8-like immunoreactive projection neurons of the rat main olfactory bulb. J Comp Neurol 285, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • McLean JH, Darby-King A (1994) Lack of evidence for serotonergic effect on the cellular development of the olfactory bulb in the postnatal rat. Brain Res Bull 34, 249–59.

    Article  PubMed  CAS  Google Scholar 

  • McLean JH, Darby-King A, Hodge E (1996) 5-HT2 receptor involvement in conditioned olfactory learning in the neonate rat pup. Behav Neurosci 110, 1426–34.

    Article  PubMed  CAS  Google Scholar 

  • McLean JH, Darby-King A, Sullivan RM, King SR (1993) Serotonergic influence on olfactory learning in the neonate rat. Behav Neural Biol 60, 152–62.

    Article  PubMed  CAS  Google Scholar 

  • McLean JH, Shipley MT (1987a) Serotonergic afferents to the rat olfactory bulb. I. Origins and laminar specificity of serotonergic inputs in the adult rat. J Neurosci 7, 3016–28.

    PubMed  CAS  Google Scholar 

  • McLean JH, Shipley MT (1987b) Serotonergic afferents to the rat olfactory bulb. II. Changes in fiber distribution during development. J Neurosci 7, 3029–39.

    PubMed  CAS  Google Scholar 

  • McLean JH, Shipley MT (1991) Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat. J Comp Neurol 304, 467–77.

    Article  PubMed  CAS  Google Scholar 

  • McLean JH, Shipley MT, Nickell WT, Aston-Jones G, Reyher CKH (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J Comp Neurol 285, 339–49.

    Article  PubMed  CAS  Google Scholar 

  • Mechawar N, Saghatelyan A, Grailhe R et al. (2004) Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc Natl Acad Sci USA 101, 9822–6.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P, Wang F, Dulac C et al. (1996) Visualizing an olfactory sensory map. Cell 87, 675–86.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kishi K, Ojima H (1983) Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J Comp Neurol 219, 339–55.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Satou M, Takagi SF (1979) Axonal projection of anterior olfactory nuclear neurons to the olfactory bulb bilaterally. Exp Neurol 64, 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Moriizumi T, Tsukatani T, Sakashita H, Miwa T (1994) Olfactory disturbance induced by deafferentation of serotonergic fibers in the olfactory bulb. Neuroscience 61, 733–8.

    Article  PubMed  CAS  Google Scholar 

  • Nagayama S, Takahashi YK, Yoshihara Y, Mori K (2004) Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. J Neurophysiol 91, 2532–40.

    Article  PubMed  Google Scholar 

  • Nakamura S, Kimura F, Sakaguchi T (1987) Postnatal development of electrical activity in the locus ceruleus. J Neurophysiol 58, 510–24.

    PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone V, Hökfelt T (1993a) Distribution of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: An in situ hybridization study. J Comp Neurol 328, 575–94.

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone VA, Hokfelt T (1993b) Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: An in situ hybridization study. Neuroscience 56, 1023–39.

    Article  PubMed  CAS  Google Scholar 

  • Ojima H, Yamasaki T, Kojima H, Akashi A (1988) Cholinergic innervation of the main and the accessory olfactory bulbs of the rat as revealed by a monoclonal antibody against choline acetyltransferase. Anat Embryol 178, 481–8.

    Article  PubMed  CAS  Google Scholar 

  • Okutani F, Kaba H, Takahashi S, Seto K (1998) The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb. Brain Res 783, 272–9.

    Article  PubMed  CAS  Google Scholar 

  • Okutani F, Yagi F, Kaba H (1999) GABAergic control of olfactory learning in young rats. Neuroscience 93, 1297–300.

    Article  PubMed  CAS  Google Scholar 

  • de Olmos J, Hardy H, Heimer L (1978) The afferent connections of the main and the accessory olfactory bulb formations in the rat: An experimental HRP-study. J Comp Neurol 181. 213–44.

    Article  PubMed  Google Scholar 

  • Orona E, Rainer EC, Scott JW (1984) Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J Comp Neurol 226, 346–56.

    Article  PubMed  CAS  Google Scholar 

  • Orona E, Scott JW, Rainer EC (1983) Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb. J Comp Neurol 217, 227–37.

    Article  PubMed  CAS  Google Scholar 

  • Pager J (1978) Ascending olfactory information and centrifugal influences contributing to a nutritional modulation of the rat mitral cell responses. Brain Res 140, 251–69.

    Article  PubMed  CAS  Google Scholar 

  • Pager J (1983) Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats. Brain Res 289, 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Pager J, Giachetti I, Holley A, Le Magnen J (1972) A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiol Behav 9, 573–9.

    Article  PubMed  CAS  Google Scholar 

  • Pissonnier D, Thiery JC, Fabre-Nys C, Poindron P, Keverne EB (1985) The importance of olfactory bulb noradrenalin for maternal recognition in sheep. Physiol Behav 35, 361–3.

    Article  PubMed  CAS  Google Scholar 

  • Pressler RT, Inoue T, Strowbridge BW (2007) Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J Neurosci 27, 10969–81.

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Powell TPS (1970a) An electron-microscopic study of the termination of the afferent fibers to the olfactory bulb from the cerebral hemisphere. J Cell Sci 7, 157–87.

    PubMed  CAS  Google Scholar 

  • Price JL, Powell TPS (1970b) An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J Anat 107, 215–37.

    PubMed  CAS  Google Scholar 

  • Rajan R, Clement JP, Bhalla US (2006) Rats smell in stereo. Science 311, 666–70.

    Article  PubMed  CAS  Google Scholar 

  • Rangel S, Leon M (1995) Early odor preference training increases olfactory bulb norepinephrine. Dev Brain Res 85, 187–91.

    Article  CAS  Google Scholar 

  • Ravel N, Elaagouby A, Gervais R (1994) Scopolamine injection into the olfactory bulb impairs short-term olfactory memory in rats. Behav Neurosci 108, 317–24.

    Article  PubMed  CAS  Google Scholar 

  • Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–55.

    Article  PubMed  CAS  Google Scholar 

  • Reyher CKH, Schwerdtfeger WK, Baumgarten HG (1988) Interbulbar axonal collateralization and morphology of anterior olfactory nucleus neurons in the rat. Brain Res Bull 20, 549–66.

    Article  PubMed  CAS  Google Scholar 

  • Rubin BD, Katz LC (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Sallaz M, Jourdan F (1996) Odour-induced c-fos expression in the rat olfactory bulb: Involvement of centrifugal afferents. Brain Res 721, 66–75.

    Article  PubMed  CAS  Google Scholar 

  • Santacana M, Heredia M, Valverde F (1992) Development of the main efferent cells of the olfactory bulb and of the bulbar component of the anterior commissure. Dev Brain Res 65, 75–83.

    Article  CAS  Google Scholar 

  • Santiago AC, Shammah-Lagnado SJ (2004) Efferent connections of the nucleus of the lateral olfactory tract in the rat. J Comp Neurol 471, 314–32.

    Article  PubMed  Google Scholar 

  • Sassoé-Pognetto M, Utvik JK, Camoletto P et al. (2003) Organization of postsynaptic density proteins and glutamate receptors in axodendritic and dendrodendritic synapses of the rat olfactory bulb. J Comp Neurol 463, 237–48.

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Eichenbaum H (1995) Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J Neurophysiol 74, 733–50.

    PubMed  CAS  Google Scholar 

  • Schoenfeld TA, Knott TK (2002) NADPH diaphorase activity in olfactory receptor neurons and their axons conforms to a rhinotopically-distinct dorsal zone of the hamster nasal cavity and main olfactory bulb. J Chem Neuroanat 24, 269–85.

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld TA, Knott TK (2004) Evidence for the disproportionate mapping of olfactory airspace onto the main olfactory bulb of the hamster. J Comp Neurol 476, 186–201.

    Article  PubMed  Google Scholar 

  • Schoenfeld TA, Marchand JE, Macrides F (1985) Topographic organization of tufted cell axonal projections in the hamster main olfactory bulb: an intrabulbar associational system. J Comp Neurol 235, 503–18.

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, Ranier EC, Pemberton JL, Orona E, Mouradian LE (1985) Pattern of rat olfactory bulb mitral and tufted cell connections to the anterior olfactor nucleus pars externa. J Comp Neurol 242, 415–24.

    Article  PubMed  CAS  Google Scholar 

  • Senut MC, Menetrey D, Lamour Y (1989) Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of Broca to dorsal hippocampus, cingulate cortex and olfactory bulb: A combined wheatgerm agglutinin-apohorseradish peroxidase-gold immunohistochemical study. Neuroscience 30, 385–403.

    Article  PubMed  CAS  Google Scholar 

  • Shipley MT, Halloran FJ, de la Torre J (1985) Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res 329, 294–9.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan RM, McGaugh JL, Leon M (1991) Norepinephrine-induced plasticity and one-trial olfactory learning in neonatal rats. Dev Brain Res 60, 219–28.

    Article  CAS  Google Scholar 

  • Sullivan RM, Wilson DA, Leon M (1989) Norepinephrine and learning-induced plasticity in infant rat olfactory system. J Neurosci 9, 3998–4006.

    PubMed  CAS  Google Scholar 

  • Takahashi YK, Kurosaki M, Hirono S, Mori K (2004) Topographic representation of odorant molecular features in the rat olfactory bulb. J Neurophysiol 92, 2413–27.

    Article  PubMed  CAS  Google Scholar 

  • Trombley PQ, Shepherd GM (1992) Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures. J Neurosci 12, 3985–91.

    PubMed  CAS  Google Scholar 

  • Uchida N, Takahashi YK, Tanifuji M, Mori K (2000) Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features. Nat Neurosci 3, 1035–43.

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–91.

    Article  PubMed  CAS  Google Scholar 

  • Veyrac A, Didier A, Colpaert F, Jourdan F, Marien M (2005) Activation of noradrenergic transmission by α1-antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp Neurol 194, 444–56.

    Article  PubMed  CAS  Google Scholar 

  • Wellis DP, Scott JW, Harrison TA (1989) Discrimination among odorants by single neurons of the rat olfactory bulb. J Neurophysiol 61, 1161–77.

    PubMed  CAS  Google Scholar 

  • Whitman MC, Greer CA (2007) Synaptic integration of adult-generated olfactory bulb granule cells: Basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27, 9951–61.

    Article  PubMed  CAS  Google Scholar 

  • Willhite DC, Nguyen KT, Masurkar AV, Greer CA, Shepherd GM, Chen WR (2006) Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci USA 103, 12592–7.

    Article  PubMed  CAS  Google Scholar 

  • Won MH, Ohno T, Suh JG et al. (1998) Serotonergic neurons are present and innervate blood vessels in the olfactory bulb of the laboratory shrew, Suncus murinus. Neurosci Lett 243, 53–6.

    Article  PubMed  CAS  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 10, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351, 357–73.

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara Y, Kawasaki M, Tamada A et al. (1997) OCAM: A new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17, 5830–42.

    PubMed  CAS  Google Scholar 

  • Yuan Q, Harley CW, Bruce JC, Darby-King A, McLean JH (2000) Isoproterenol increases CREB phosphorylation and olfactory nerve-evoked potentials in normal and 5-HT-depleted olfactory bulbs in rat pups only at doses that produce odor preference learning. Learn Mem 7, 413–21.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Harley CW, McLean JH (2003) Mitral cell β1 and 5-HT2A receptor colocalization and cAMP coregulation: A new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10, 5–15.

    Article  PubMed  Google Scholar 

  • Zaborszky L, Carlsen J, Brashear HR, Heimer L (1986) Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J Comp Neurol 243, 488–509.

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Horowitz LF, Montmayeur J-P, Snapper S, Buck LB (2001) Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Matsutani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsutani, S., Yamamoto, N. Centrifugal innervation of the mammalian olfactory bulb. Anato Sci Int 83, 218–227 (2008). https://doi.org/10.1111/j.1447-073X.2007.00223.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-073X.2007.00223.x

Key words

Navigation