Skip to main content
Log in

Special features of electrical conductivity in a parabolic quantum well in a magnetic field

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The Kubo formula was used to derive a general expression for static electrical conductivity in a magnetic field directed parallel to the surface of a parabolic quantum well. Conditions for the applicability of the relaxation-time approximation for the calculation of the correlation functions were formulated using the cumulant-averaging method. The tensors of longitudinal and transverse conductivities in the dimensionally confined system under consideration, with allowance made for the interaction of electrons with acoustic and optical vibrations, were calculated. It is shown that the transverse conductivity in quantum-well systems is much higher (by several orders of magnitude) than in the bulk samples. The dependence of longitudinal conductivity on the magnetic field was studied for a highly degenerate electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Cantrell and P. N. Butcher, J. Phys. C 18, L587 (1985).

    ADS  Google Scholar 

  2. B. E. Sernelius, K.-F. Berggren, M. Tamak, and C. Mc. Fadden, J. Phys. C 18, 225 (1985).

    Article  ADS  Google Scholar 

  3. D. G. Cantrell and P. N. Butcher, J. Phys. C 18, 5111 (1985).

    ADS  Google Scholar 

  4. Hui Tang and P. N. Butcher, J. Phys. C 21, 3313 (1988).

    ADS  Google Scholar 

  5. E. Yu. Safronov and E. P. Sinyavskii, Phys. Status Solidi B 180, 377 (1993).

    Google Scholar 

  6. V. A. Geiler, V. A. Margulis, and L. I. Filina, Zh. Éksp. Teor. Fiz. 113, 1376 (1998) [JETP 86, 751 (1998)].

    Google Scholar 

  7. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    MATH  MathSciNet  Google Scholar 

  8. B. A. Tavger and M. Sh. Erukhimov, Zh. Éksp. Teor. Fiz. 51, 528 (1966) [Sov. Phys. JETP 24, 354 (1967)].

    Google Scholar 

  9. E. P. Sinyavskii, S. M. Sokovnich, and F. I. Pasechnik, Phys. Status Solidi B 209, 55 (1998).

    ADS  Google Scholar 

  10. É. P. Sinyavskii and E. I. Grebenshchikova, Zh. Éksp. Teor. Fiz. 116, 2069 (1999) [JETP 89, 1120 (1999)].

    Google Scholar 

  11. É. P. Sinyavskii and E. I. Grebenshchikova, Zh. Éksp. Teor. Fiz. 119(3), 527 (2001) [JETP 92, 493 (2001)].

    Google Scholar 

  12. R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

    MATH  MathSciNet  Google Scholar 

  13. P. J. Peters, P. Schehzger, M. J. Lea, et al., Phys. Rev. B 50, 11570 (1994).

  14. X. L. Lei, J. Phys. C 18, L993 (1985).

    Google Scholar 

  15. B. M. Askerov, Kinetic Effects in Semiconductors (Nauka, Leningrad, 1970), p. 303.

    Google Scholar 

  16. M. Shayegan, T. Sajoto, M. Santos, and C. Silvestre, Appl. Phys. Lett. 53, 791 (1988).

    ADS  Google Scholar 

  17. A. I. Anselm, Introduction to Semiconductor Theory (Nauka, Moscow, 1978; Prentice-Hall, Englewood Cliffs, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 36, No. 8, 2002, pp. 989–992.

Original Russian Text Copyright © 2002 by Sinyavskii, Khamidullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinyavskii, E.P., Khamidullin, R.A. Special features of electrical conductivity in a parabolic quantum well in a magnetic field. Semiconductors 36, 924–928 (2002). https://doi.org/10.1134/1.1500473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1500473

Keywords

Navigation