Skip to main content
Log in

New viral vector for efficient production of target proteins in plants

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A new potato virus X (PVX)-based viral vector for superproduction of target proteins in plants has been constructed. The triple gene block and coat protein gene of PVX were substituted by green fluorescent protein. This reduced viral vector was delivered into plant cells by agroinjection (injection of Agrobacterium tumefaciens cells, carrying viral vector cDNA within T-DNA, into plant leaves), and this approach allowed to dramatically reduce the size of the vector genome. The novel vector can be used for production of different proteins including pharmaceuticals in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CP:

coat protein

crTMV:

crucifer infecting tobamovirus

GFP:

green fluorescent protein

MP:

movement protein

PVA:

potato virus A

PVX:

potato virus X

RdRp:

RNA-dependent RNA-polymerase

SGP:

subgenomic promoter

sgRNA:

subgenomic RNA

TBSV:

tomato bushy stunt virus

T-DNA:

a fragment of Ti (tumor inducing) plasmid which is transferred into plant cell nucleus

TGB:

triple gene block

TMV:

tobacco mosaic virus

3′-UTR:

3′-untranslated region

VIGS:

virus-induced gene silencing

References

  1. Gleba, Y., Klimyuk, V., and Marillonnet, S. (2005) Vaccine, 23, 2042–2048.

    Article  PubMed  CAS  Google Scholar 

  2. Canizares, M. C., Nicholson, L., and Lomonossoff, G. P. (2005) Immunol. Cell Biol., 83, 263–270.

    Article  PubMed  CAS  Google Scholar 

  3. Mechtcheriakova, I. A., Eldarov, M. A., Nicholson, L., Shanks, M., Skryabin, K. G., and Lomonossoff, G. P. (2006) J. Virol. Meth., 131, 10–15.

    Article  CAS  Google Scholar 

  4. Santi, L., Giritch, A., Roy, C. J., Marillonnet, S., Klimyuk, V., Gleba, Y., Webb, R., Arntzen, C. J., and Mason, H. S. (2006) Proc. Natl. Acad. Sci. USA, 103, 861–866.

    Article  PubMed  CAS  Google Scholar 

  5. Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L. K., and Dawson, W. O. (1999) Virology, 255, 312–323.

    Article  PubMed  CAS  Google Scholar 

  6. Chapman, S., Kavanagh, T., and Baulcombe, D. (1992) Plant J., 2, 549–557.

    PubMed  CAS  Google Scholar 

  7. Scholthof, H. B., Morris, T. J., and Jackson, A. O. (1993) Mol. Plant Microbe Interact., 6, 309–322.

    CAS  Google Scholar 

  8. Scholthof, H. B. (1999) J. Virol., 73, 7823–7829.

    PubMed  CAS  Google Scholar 

  9. Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., and Gleba, Y. (2004) Proc. Natl. Acad. Sci. USA, 101, 6852–6857.

    Article  PubMed  CAS  Google Scholar 

  10. Dorokhov, Yu. L., Ivanov, P. A., Novikov, V. K., Agranovsky, A. A., Morozov, S. Yu., Efimov, V. A., Casper, R., and Atabekov, J. G. (1994) FEBS Lett., 350, 5–8.

    Article  PubMed  CAS  Google Scholar 

  11. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Nat. Biotechnol., 23, 718–723.

    Article  PubMed  CAS  Google Scholar 

  12. Voinnet, O., Pinto, Y. M., and Baulcombe, D. C. (1999) Proc. Natl. Acad. Sci. USA, 96, 14147–14152.

    Article  PubMed  CAS  Google Scholar 

  13. Savenkov, E. I., and Valkonen, J. P. T. (2002) J. Gen. Virol., 83, 2325–2335.

    PubMed  CAS  Google Scholar 

  14. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Plant Cell, 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  15. Bevan, M. (1984) Nucleic Acids Res., 12, 8711–8721.

    PubMed  CAS  Google Scholar 

  16. Parry, M. A., Andralojc, P. J., Mitchell, R. A., Madgwick, P. J., and Keys, A. J. (2003) J. Exp. Bot., 54, 1321–1333.

    Article  PubMed  CAS  Google Scholar 

  17. Tzfira, T., and Citovsky, V. (2003) Plant Physiol., 133, 943–947.

    Article  PubMed  CAS  Google Scholar 

  18. Waigmann, E., Ueki, S., Trutnyeva, K., and Citovsky, V. (2004) Crit. Rev. Plant Sci., 23, 195–250.

    Article  CAS  Google Scholar 

  19. Morozov, S. Yu., Fedorkin, O. N., Juttner, G., Schiemann, J., Baulcombe, D. C., and Atabekov, J. G. (1997) J. Gen. Virol., 78, 2077–2083.

    PubMed  CAS  Google Scholar 

  20. Giddings, G., Allison, G., Brooks, D., and Carter, A. (2000) Nat. Biotechnol., 18, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Atabekov.

Additional information

Published in Russian in Biokhimiya, 2006, Vol. 71, No. 8, pp. 1043–1049.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-109, July 9, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarova, T.V., Skulachev, M.V., Zvereva, A.S. et al. New viral vector for efficient production of target proteins in plants. Biochemistry (Moscow) 71, 846–850 (2006). https://doi.org/10.1134/S0006297906080049

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906080049

Key words

Navigation