Skip to main content
Log in

Rice dehydrin K-segments have in vitro antibacterial activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Dehydrins are groups of plant proteins that have been shown to response to various environmental stimuli such as dehydration, elevated salinity, and low temperature. However, their roles in plant defense against microbes have not been demonstrated. In an attempt to discover plant antimicrobial proteins, we have screened a rice cDNA library and isolated several cDNAs coding for dehydrins. Protein extracts from Escherichia coli expressing these cDNAs were tested for their activity against Gram-positive bacteria (Bacillus pumilus, B. subtilis, Staphylococcus aureus, and Sarcina lutea) and Gramnegative bacteria (Escherichia coli and Xanthomonas oryzae pv. oryzae). The results indicate that the crude protein extracts exhibited antibacterial activities against the Gram-positive bacteria. However, dehydrins purified by immunoaffinity chromatography were not active against the bacteria. To pinpoint the dehydrin peptides that were responsible for the bactericidal activity, we expressed DNA sequences coding for truncated dehydrins containing either K- or S-segment and found that K-segment peptides, and not S-segment, were responsible for the antibacterial activities against Gram-positive bacteria. Antibacterial assay with synthetic K-segments indicated that the peptides inhibited growth of B. pumilus with minimum inhibition concentration and minimum bactericidal concentration of 130 and 400 μg/ml, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng, J., Yuan, F., Gao, Y., Liang, C., Xu, J., Zhang, C., and He, L. (2003) Biochem. J., 376, 481–487.

    Article  PubMed  CAS  Google Scholar 

  2. Huynh, Q. K., Borgmeyer, J. R., Smith, C. E., Bell, L. D., and Shah, D. M. (1996) Biochem. J., 316, 723–727.

    PubMed  CAS  Google Scholar 

  3. Ye, X. Y., and Ng, T. B. (2000) Biochem. Biophys. Res. Commun., 273, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  4. Rairdan, G. J., Collier, S. M., Sacco, M. A., Baldwin, T. T., Boettrich, T., and Moffett, P. (2008) Plant Cell, 20, 739–751.

    Article  PubMed  CAS  Google Scholar 

  5. Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C., and Ronald, P. (1995) Science, 270, 1804–1806.

    Article  PubMed  CAS  Google Scholar 

  6. Cheng, X., Liu, G., Ye, G., Wang, H., Shen, X., Wu, K., Xie, J., and Altosaar, I. (2009) Gene, 430, 132–139.

    Article  PubMed  CAS  Google Scholar 

  7. Beck, E. H., Fettig, S., Knake, C., Hartig, K., and Bhattarai, T. (2007) J. Biosci., 32, 501–510.

    Article  PubMed  CAS  Google Scholar 

  8. Allagulova, Ch. R., Gimalov, F., Shakirova, F. M., and Vakhitov, V. A. (2003) Biochemistry (Moscow), 68, 945–951.

    Article  CAS  Google Scholar 

  9. Tommasini, L., Svensson, J. T., Rodriguez, E. M., Wahid, A., Malatrasi, M., Kato, K., Wanamaker, S., Resnik, J., and Close, T. J. (2008) Funct. Integr. Genom., 8, 387–405.

    Article  CAS  Google Scholar 

  10. Yang, B., Sugio, A., and White, F. F. (2006) PNAS, 103, 10503–10508.

    Article  PubMed  CAS  Google Scholar 

  11. Campos, F., Zamudio, F., and Covarrubias, A. A. (2006) Biochem. Biophys. Res. Commun., 342, 406–413.

    Article  PubMed  CAS  Google Scholar 

  12. Zhai, C. J., Wang, H. J., Li, L. Y., and Liu, G. Z. (2009) in Proc. of Plant Physiology and Molecular Biology Research Conf., Hebei, China, pp. 206–209.

  13. Jang, W. S., Kim, H. K., Lee, K. Y., Kim, S. A., Han, Y. S., and Lee, I. H. (2006) FEBS Lett., 580, 1490–1496.

    Article  PubMed  CAS  Google Scholar 

  14. Close, T. J. (1996) Plant Physiol., 97, 785–803.

    Google Scholar 

  15. Lee, S. C., Lee, M. Y., Kim, S. J., Jun, S. H., An, G., and Kim, S. R. (2005) Mol. Cells, 19, 212–218.

    PubMed  CAS  Google Scholar 

  16. Lopez, C. G., Banowetz, G., Peterson, C. J., and Kronstad, W. E. (2001) Hereditas, 135, 175–181.

    Article  PubMed  CAS  Google Scholar 

  17. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Meth. Enzymol., 185, 60–89.

    Article  PubMed  CAS  Google Scholar 

  18. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997) Protein Eng., 10, 673–676.

    Article  PubMed  CAS  Google Scholar 

  19. Yeaman, M. R., and Yount, N. Y. (2003) Pharmacol. Rev., 55, 27–55.

    Article  PubMed  CAS  Google Scholar 

  20. Stone, D. J. M., Waugh, R. J., Bowie, J. H., Wallace, J. C., and Tyler, M. J. (1993) J. Chem. Res., 138, 910–936.

    Google Scholar 

  21. Broekaert, W. F., Cammue, B. P. A., de Bolle, M. F. C., Thevissen, K., de Samblanx, G. W., and Osborn, R. W. (1997) Crit. Rev. Plant Sci., 16, 297–323.

    CAS  Google Scholar 

  22. Brogden, K. A., Ackermann, M., and Huttner, K. M. (1997) Antimicrob. Agents Chemother., 41, 1615–1617.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Liu.

Additional information

Published in Russian in Biokhimiya, 2011, Vol. 76, No. 6, pp. 792–798.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM11-009, April 3, 2011.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, C., Lan, J., Wang, H. et al. Rice dehydrin K-segments have in vitro antibacterial activity. Biochemistry Moscow 76, 645–650 (2011). https://doi.org/10.1134/S0006297911060046

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911060046

Key words

Navigation