Skip to main content
Log in

The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Dehydrins are a group of plant proteins that usually accumulate in response to environmental stresses. They are proposed to play specific protective roles in plant cells. Present study showed that the accumulation of dehydrins in water-stressed barley (Hordeum vulgare L.) seedlings was influenced by their treatment with salicylic acid (SA). The level of dehydrin proteins was increased by 0.20 mM SA, but decreased by 0.50 mM SA treatment. Both mRNA expression and protein accumulation of a typical barley dehydrin, DHN5, were enhanced by SA treatment when SA concentrations were lower than 0.25 mM. However, the higher SA concentrations significantly decreased the protein level of DHN5 despite of a stable mRNA level. Our results also showed that low SA concentrations (less than 0.25 mM) decreased the electrolyte leakage and malondialdehyde (MDA) and H2O2 contents in water-stressed barley seedlings. But high SA concentrations (more than 0.25 mM) enhanced H2O2 accumulation, tended to cause more electrolyte leakage, and increase MDA content. These data indicated that SA could up-regulate the dehydrin gene expression and protein accumulation. Since the protective role of dehydrins in plant cells, such effect could be an important reason for the SA-mediated alleviation on water stress injury. But excessive SA could suppress the accumulation of dehydrin proteins and aggravate the oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LEA:

late embryogenesis abundant

MDA:

malondialdehyde

SA:

salicylic acid

TBS:

Tris-buffered saline

References

  1. Close, T.J., Dehydrins: Emergence of a Biochemical Role of a Family of Plant Dehydration Proteins, Physiol. Plant., 1996, vol. 97, pp. 795–803.

    Article  CAS  Google Scholar 

  2. Close, T.J., Dehydrins: A Commonalty in the Response of Plants to Dehydration and Low Temperature, Physiol. Plant., 1997, vol. 100, pp. 291–296.

    Article  CAS  Google Scholar 

  3. Allagulova, Ch.R., Gimalov, F.R., Shakirova, F.M., and Vakhitov, V.A., Plant Dehydrins: Structure and Putative Functions, Biochimiya, 2004, vol. 68, pp. 945–951.

    Google Scholar 

  4. Campbell, S. and Close, T.J., Dehydrins: Genes, Proteins, and Associations with Phenotypic Traits, New Phytol., 1997, vol. 137, pp. 61–74.

    Article  CAS  Google Scholar 

  5. Shah, J., The Salicylic Acid Loop in Plant Defense, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 365–371.

    Article  PubMed  CAS  Google Scholar 

  6. Senaratna, T., Touchell, D., Bunn, E., and Dixon, K., Acetyl Salicylic Acid (Aspirin) and Salicylic Acid Induce Multiple Stress Tolerance in Bean and Tomato Plants, Plant Growth Regul., 2000, vol. 30, pp. 157–161.

    Article  CAS  Google Scholar 

  7. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Metraux, J.-P., and Ryals, J.A., Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance, Plant Cell, 1991, vol. 3, pp. 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  8. Rhoads, D.M. and McIntosh, L., The Salicylic Acid-Inducible Alternative Oxidase Gene aux1 and Genes Encoding Pathogenesis-Related Proteins Share Regions of Sequence Similarity in Their Promoters, Plant Mol. Biol., 1993, vol. 21, pp. 615–624.

    Article  PubMed  CAS  Google Scholar 

  9. Li, Z., Zhao, L., Kai, G., Yu, S., Cao, Y., Pang, Y., Sun, X., and Tang, K., Cloning and Expression Analysis of a Water Stress-Induced Gene from Brassica oleracea, Plant Physiol. Biochem., 2004, vol. 42, pp. 789–794.

    Article  PubMed  CAS  Google Scholar 

  10. Salzman, R.A., Brady, J.A., Finlayson, S.A., Buchanan, C.D., Summer, E.J., Sun, F., Klein, P.E., Klein, R.R., Pratt, L.H., Cordonnier-Pratt, M.-M., and Mullet, J.E., Transcriptional Profiling of Sorghum Induced by Methyl Jasmonate, Salicylic Acid, and Aminocyclopropane Carboxylic Acid Reveals Cooperative Regulation and Novel Gene Responses, Plant Physiol., 2005, vol. 138, pp. 352–368.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Y., Li, J., Yu, F., Cong, L., Wang, L., Burkard, G., and Chai, T., Cloning and Expression Analysis of SKn-Type Dehydrin Gene from Bean in Response to Heavy Metals, Mol. Biotech., 2006, vol. 32, pp. 205–218.

    Article  CAS  Google Scholar 

  12. Bradford, M.N., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  13. Xi, D.-H., Lan, L.-Q., Wang, J.-H., Xu, W.-L., Xiang, B.-C., and Lin, H.-H., Variation Analysis of Two Cucumber Mosaic Viruses and Their Associated Satellite RNAs from Sugar Beet in China, Virus Genes, 2006, vol. 33, pp. 293–298.

    PubMed  CAS  Google Scholar 

  14. Choi, D.-W., Zhu, B., and Close, T.J., The Barley (Hordeum vulgare L.) Dehydrin Multigene Family: Sequences, Allele Types, Chromosome Assignments, and Expression Characteristics of 11 Dhn Genes of cv. Dicktoo, Theor. Appl. Genet., 1999, vol. 98, pp. 1234–1247.

    Article  CAS  Google Scholar 

  15. Duan, H.-G., Yuan, S., Liu, W.-J., Xi, D.-H., Qing, D.-H., Liang, H.-G., and Lin, H.-H., Effects of Exogenous Spermidine on Photosystem II of Wheat Seedlings under Water Stress, J. Integr. Plant Biol., 2006, vol. 48, pp. 920–927.

    Article  CAS  Google Scholar 

  16. Karabal, E., Yucel, M., and Oktem, H.A., Antioxidant Responses of Tolerant and Sensitive Barley Cultivars to Boron Toxicity, Plant Sci., 2003, vol. 164, pp. 925–933.

    Article  CAS  Google Scholar 

  17. Velikova, V., Yordanov, I., and Edreva, A., Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Polyamines, Plant Sci., 2000, vol. 151, pp. 59–66.

    Article  CAS  Google Scholar 

  18. Zhu, B., Choi, D.W., Fenton, R., and Close, T.J., Expression of the Barley Dehydrin Multigene Family and the Development of Freezing Tolerance, Mol. Gen. Genet., 2000, vol. 264, pp. 145–153.

    Article  PubMed  CAS  Google Scholar 

  19. Shen, Y., Tang, M.-J., Hu, Y.-L., and Lin, Z.-P., Isolation and Characterization of a Dehydrin-Like Gene from Drought-Tolerant Boea crassifolia, Plant Sci., 2004, vol. 166, pp. 1167–1175.

    Article  CAS  Google Scholar 

  20. Yang, Y., Qi, M., and Mei, C., Endogenous Salicylic Acid Protects Rice Plants from Oxidative Damage Caused by Aging as Well as Biotic and Abiotic Stress, Plant J., 2004, vol. 40, pp. 909–919.

    Article  PubMed  CAS  Google Scholar 

  21. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B., Influence of Salicylic Acid on H2O2 Production, Oxidative Stress, and H2O2-Metabolizing Enzymes, Plant Physiol., 1997, vol. 115, pp. 137–149.

    Article  PubMed  CAS  Google Scholar 

  22. Ganesan, V. and Thomas, G., Salicylic Acid Response in Rice: Influence of Salicylic Acid on H2O2 Accumulation and Oxidative Stress, Plant Sci., 2001, vol. 160, pp. 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  23. Kang, G.-Z., Wang, Z.-X., and Sun, G.-C., Participation of H2O2 in Enhancement of Cold Chilling by Salicylic Acid in Banana Seedlings, Acta Bot. Sinica, 2003, vol. 45, pp. 567–573.

    CAS  Google Scholar 

  24. Moons, A., Bauw, G., Prinsen, E., van Montagu, M., and van der Straeten, D., Molecular and Physiological Responses to Abscisic Acid and Salts in Roots of Salt-Sensitive and Salt-Tolerant Indica Rice Varieties, Plant Physiol., 1995, vol. 107, pp. 177–186.

    Article  PubMed  CAS  Google Scholar 

  25. Cellier, F., Conéjéro, G., Breitler, J.-C., and Casse, F., Molecular and Physiological Responses to Water Deficit in Drought-Tolerant and Drought-Sensitive Lines of Sunflower. Accumulation of Dehydrin Transcripts Correlates with Tolerance, Plant Physiol., 1998, vol. 116, pp. 319–328.

    Article  PubMed  CAS  Google Scholar 

  26. Stupnikova, I.V., Borovskii, G.B., and Voinikov, V.K., Seasonal Changes in the Composition and Content of Dehydrins in Winter Wheat Plants, Russ. J. Plant Physiol., 2004, vol. 51, pp. 636–641.

    Article  CAS  Google Scholar 

  27. Tunnacliffe, A. and Wise, M.J., The Continuing Conundrum of the LEA Proteins, Naturwissenschaften, 2007, vol. 94, pp. 791–812.

    Article  PubMed  CAS  Google Scholar 

  28. Dean, R.T., Fu, S., Stocker, R., and Davis, M.J., Biochemistry and Pathology of Radical-Mediated Protein Oxidation, Biochem. J., 1997, vol. 324, pp. 1–18.

    PubMed  CAS  Google Scholar 

  29. Hara, M., Fujinaga, M., and Kuboi, T., Radical Scavenging Activity and Oxidative Modification of Citrus Dehydrin, Plant Physiol. Biochem., 2004, vol. 42, pp. 657–662.

    Article  PubMed  CAS  Google Scholar 

  30. Hara, M., Terashima, S., Fukaya, T., and Kuboi, T., Enhancement of Cold Tolerance and Inhibition of Lipid Peroxidation by Citrus Dehydrin in Transgenic Tobacco, Planta, 2003, vol. 217, pp. 290–298.

    PubMed  CAS  Google Scholar 

  31. Hara, M., Fujinaga, M., and Kuboi, T., Metal Binding by Citrus Dehydrin with Histidine-Rich Domains, J. Exp. Bot., 2005, vol. 56, pp. 2695–2703.

    Article  PubMed  CAS  Google Scholar 

  32. Durner, J. and Klessig, D.F., Inhibition of Ascorbate Peroxidase by Salicylic Acid and 2,6-Dichloroisonicotinic Acid, Two Inducers of Plant Defense Responses, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 11 312–11 316.

    Article  CAS  Google Scholar 

  33. Jiang, M.-Y., Generation of Hydroxyl Radicals and Its Reaction to Cellular Oxidative Damage in Plants Subjected to Water Stress, Acta Bot. Sinica, 1999, vol. 41, pp. 229–234.

    CAS  Google Scholar 

  34. Sun, X., Yuan, S., and Lin, H.-H., Salicylic Acid Decreases the Levels of Dehydrin-Like Proteins in Tibetan Hulless Barley Leaves under Water Stress, Z. Naturforsch., 2006, vol. 61c, pp. 245–250.

    Google Scholar 

  35. Singh, B. and Usha, K., Salicylic Acid Induced Physiological and Biochemical Changes in Wheat Seedlings under Water Stress, Plant Growth Regul., 2003, vol. 39, pp. 137–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Lin.

Additional information

Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 3, pp. 388–394.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Xi, D.H., Feng, H. et al. The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings. Russ J Plant Physiol 56, 348–354 (2009). https://doi.org/10.1134/S1021443709030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443709030078

Key words

Navigation