Skip to main content
Log in

Transformation of wheat with the HMW-GS 1Bx14 gene without markers

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

High molecular weight (HMW) glutenin polypeptides are critical contributors to the visco/elastic properties responsible for the processing characteristics and utilizations of wheat flour. In order to improve bread making quality of flour and produce transgenic plants free of selectable markers, a linear DNA construct consisting of a minimal expression cassette with the HMW-GS 1Bx14 gene was transformed into wheat cultivar Mianyang19 by microprojectile bombardment. The transform ants were selected by PCR instead of herbicidal markers. Seven transgenic plants were identified from a total of 1219 transformants, yielding a transformation frequency of 0.28%. An SDS-PAGE analysis confirmed that the 1Bx14 gene was expressed in three T1 seeds of the transgenic plants. Our results demonstrated that it is feasible to obtain marker-free trans-formants using the linear-expression-cassette-transformation approach coupled with PCR selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shewry, P.R., Miles, M.J., and Tatham, A.S., The Prolamin Storage Proteins of Wheat and Related Cereals, Prog. Biophys. Mol. Biol., 1994, vol. 61, pp. 37–59.

    CAS  PubMed  Google Scholar 

  2. Altpeter, F., Vasil, V., Srivastava, V., and Vasil, I.K., Integration and Expression of the High-Molecular-Weight Glutenin Subunit 1Ax1 Gene into Wheat, Nat. Biotechnol., 1996, vol. 14, pp. 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  3. Blechl, A.E. and Anderson, O.D., Expression of a Novel Molecular-Weight Glutenin Subunit Gene in Transgenic Wheat, Nat. Biotechnol., 1996, vol. 14, pp. 875–879.

    Article  CAS  PubMed  Google Scholar 

  4. Blechl, A.E., Le, H.Q., and Anderson, O.D., Engineering Changes in Wheat Flour by Genetic Transformation, J. Plant Physiol., 1998, vol. 152, pp. 703–707.

    CAS  Google Scholar 

  5. Barro, F., Rooke, L., Bekes, F., et al., Transformation of Wheat with High Molecular Weight Subunit Genes Results in Improved Functional Properties, Nat. Biotechnol., 1997, vol. 15, pp. 1295–1299.

    Article  CAS  PubMed  Google Scholar 

  6. He, G.Y., Jone, H.D., Ovidio, D., et al., Expression of an Extended HMW Subunit in Transgenic Wheat and the Effect on Dough Mixing Properties, J. Cereal Sci., 2005, vol. 42, pp. 225–321.

    Article  CAS  Google Scholar 

  7. Alvarez, M.L., Guelman, S., Halford, N.G., et al., Silencing of HMW Glutenins in Transgenic Wheat Expressing Extra HMW Subunits, Theor. Appl. Genet., 2000, vol. 100, pp. 319–327.

    Article  CAS  Google Scholar 

  8. Barro, F., Barcelo, P., Lazzeri, P.A., et al., Functional Properties and Agronomic Performance of Transgenic Tritordeum Expressing High Molecular Weight Glutenin Subunit Genes 1Ax1 and 1Dx5, J. Cereal Sci., 2003, vol. 37, pp. 64–70.

    Article  Google Scholar 

  9. Blechl, A.E., Lin, J., Nguyen, S., et al., Transgenic Wheats with Elevated Levels of Dx5 and/or Dy10 High-Molecular-Weight Glutenin Subunits Yield Droughts with Increased Mixing Strength and Tolerance, J. Cereal Sci., 2007, vol. 45, pp. 172–183.

    Article  CAS  Google Scholar 

  10. Deng, Z.Y., Tian, J.C., and Sun, G.X., Influence of High Molecular Weight Glutenin Subunit Substitution on Rheological Behaviour and Bread-Baking Quality of Near-Isogenic Lines Developed from Chinese Wheats, Plant Breed., 2005, vol. 124, pp. 428–431.

    Article  CAS  Google Scholar 

  11. Xu, H., Wang, R.J., Shen, X., et al., Functional Properties of a New Low-Molecular-Weight Glutenin Subunit Gene from a Bread Wheat Cultivar, Theor. Appl. Genet., 2006, vol. 113, pp. 1295–1303.

    Article  CAS  PubMed  Google Scholar 

  12. Jin, W., Wu, F., Kong, D., and Guo, A., Amplification and Bacterium Expression of High-Molecular-Weight Glutenin Subunit 1Bx14 Gene from Wheat, J. Zhejiang Univ. Sci. (Agric. Life Sci.), 2007, vol. 33, pp. 45–50.

    Google Scholar 

  13. Bhalla, P.L., Genetic Engineering of Wheat-Current Challenges and Opportunities, Trends Biotechnol., 2006, vol. 24, pp. 305–311.

    Article  CAS  PubMed  Google Scholar 

  14. Bevan, M.W., Flavell, R.B., and Chilton, M.D., A Chimaeric Antibiotic Resistance Gene as a Selection Marker for Plant Cell Transformation, Nature, 1983, vol. 304, pp. 184–187.

    Article  CAS  Google Scholar 

  15. Shah, D., Horsch, R., Klee, H., et al., Engineering Herbicide Tolerance in Transgenic Plants, Science, 1986, vol. 233, pp. 478–481.

    Article  CAS  PubMed  Google Scholar 

  16. Cluster, P.D., Odell, M., Metzlaff, M., and Flavell, R.B., Details of T-DNA Structural Organization from a Transgenic Petunia Population Exhibiting Co-Suppression, Plant Mol. Biol., 1996, vol. 32, pp. 1197–1203.

    Article  CAS  PubMed  Google Scholar 

  17. Buck, D.S., Wilde, D.C., Montagu, V.M., and Depicker, A., T-DNA Vector Backbone Sequences Are Frequently Integrated into the Genome of Transgenic Plants Obtained by Agrobacterium-Mediated Transformation, Mol. Breed., 2000, vol. 6, pp. 459–468.

    Article  Google Scholar 

  18. Makarevitch, I., Svitashev, S.K., and Somers, D.A., Complete Sequence Analysis of Transgene Loci from Plants Transformed via Microprojectile Bombardment, Plant Mol. Biol., 2003, vol. 52, pp. 421–432.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, H.X., Sparks, C.A., and Jones, H.D., Characterisation of T-DNA Loci and Vector Backbone Sequences in Transgenic Wheat Produced by Agrobacterium-Mediated Transformation, Mol. Breed., 2006, vol. 18, pp. 195–208.

    Article  Google Scholar 

  20. Matzke, M.A., Matzke, A.J.M., and Eggleston, W.B., Paramutation and Transgene Silencing: A Common Response to Invasive DNA?, Trends Plant Sci., 1996, vol. 1, pp. 382–388.

    Google Scholar 

  21. Muller, A.E., Kamisugi, Y., Gruneberg, R., et al., Palindromic Sequences and A+T-Rich DNA Elements Promote Illegitimate Recombination in Nicotiana tabacum, J. Mol. Biol., 1999, vol. 291, pp. 29–46.

    Article  CAS  PubMed  Google Scholar 

  22. Hugo, R.P., Maria, L.A., Gerardo, D.L.C., and Ricardo, A.R., Stable Wheat Transformation Obtained without Selectable Markers, Plant Mol. Biol., 2003, vol. 52, pp. 415–419.

    Article  Google Scholar 

  23. Komari, T., Hiei, Y., Saito, Y., et al., Vectors Carrying two Separate T-DNAs for Co-Transformation of Higher Plants Mediated by Agrobacterium tumifaciens and Segregation of Transformants Free from Selection Markers, Plant J., 1996, vol. 10,, pp. 165–174.

    Article  CAS  PubMed  Google Scholar 

  24. Dale, E.C. and Ow, D.W., Gene Transfer with Subsequent Removal of the Selection Gene from the Host Genome, Proc. Natl. Acad. Sci., 1991, vol. 88, pp. 10558–10562.

    Article  CAS  PubMed  Google Scholar 

  25. Dutt, M., Li, Z.T., Dhekney, S.A., and Gray, D.J., A Co-Transformation System to Produce Transgenic Grapevines Free of Marker Genes, Plant Sci., 2008, vol. 175, no. 3, pp. 423–430.

    Article  CAS  Google Scholar 

  26. Gadaleta, A., Giancaspro, A., Blechl, A.E., and Blanco, A., A Transgenic Durum Wheat Line That Is Free of Marker Genes and Expresses 1Dy10, J. Cereal Sci., 2008, vol. 48, no. 2, pp. 439–445.

    Article  CAS  Google Scholar 

  27. Goldbrough, A.P., Lastrella, C.N., and Yoder, J.I., Transposition Mediated Re-Positioning and Subsequent Elimination of Marker Genes from Transgenic Tomato, Nat. Biotechnol., 1993, vol. 11, pp. 223–235.

    Article  Google Scholar 

  28. Gleave, A.P., Mitra, D.S., Mudge, S.R., and Morris, B.A.M., Selectable Marker-Free Transgenic Plants without Sexual Crossing: Transient Expression of cre Recombinase and Use of a Conditional Lethal Dominant Gene, Plant Mol., Biol., 1999, vol. 40, pp. 223–235.

    Article  CAS  Google Scholar 

  29. Zubko, E. Scutt, C., and Meyer, P., Intrachromosomal Recombination between attP Regions as a Tool to Remove Selectable Marker Genes from Tobacco Transgenes, Nat. Biotechnol., 2000, vol. 18, pp. 442–445.

    Article  CAS  PubMed  Google Scholar 

  30. Zuo, J., Nui, Q.W., Moller, S.G., and Chua, N.H., Chemical-Regulated, Site-Specific DNA Excision in Transgenic Plants, Nat. Biotechnol., 2001, vol. 19, pp. 157–161.

    Article  CAS  PubMed  Google Scholar 

  31. Vega, J.M., Yu, W., Han, F., et al., Agrobacterium-Mediated Transformation of Maize (Zea mays) with Cre-lox Site Specific Recombination Cassettes in BIBAC Vectors, Plant Mol. Biol., 2008, vol. 66, pp. 587–595.

    Article  CAS  PubMed  Google Scholar 

  32. Fu, X.D., Duc, L.T., Fontana, S., et al., Linear Transgene Constructs Lacking Vector Backbone Sequences Generate Low-Copy-Number Transgenic Plants with Simple Integration Patterns, Transgene Res., 2000, vol. 9, pp. 11–19.

    Article  CAS  Google Scholar 

  33. Yao, Q., Cong, L., He, G.Y., et al., Optimization of Wheat Co-Transformation Procedure with Gene Cassettes Resulted in an Improvement in Transformation Frequency, Mol. Biol. Rep., 2007, vol. 34, pp. 61–67.

    Article  CAS  PubMed  Google Scholar 

  34. Weeks, J.T., Anderson, O.D., and Blechl, A.E., Rapid Production of Multiple Independent Lines of Fertile Transgenic Wheat (Triticum aestivum), Plant Physiol., 1993, vol. 102, pp. 1077–1108.

    CAS  PubMed  Google Scholar 

  35. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Chromosomal Location, and Population Dynamics, Proc. Natl. Acad. Sci., 1984, vol. 81, pp. 8014–8018.

    Article  CAS  PubMed  Google Scholar 

  36. Payne, P.I. and Lawrence, G.J., Catalogue of Alleles for the Complex Gene Loci, Glu A1, Glu-B1 and Glu-D1 Which Code for High Molecular Weight Subunits of Glutenin in Hexaploid Wheat, Cereal Res. Commun., 1983, vol. 11, pp. 29–35.

    Google Scholar 

  37. Mullins, M.G., Tang, F.C., and Facciotti, D., Agrobacterium Mediated Genetic Transformation of Grapevines: Transgenic Plants of Vitis rupestris Scheele and Buds of Vitis vinifera L., Nat. Biotechnol., 1990, vol. 8, pp. 1041–1045.

    Article  CAS  Google Scholar 

  38. Müller, E., Lörz, H., and Lütticke, S., Variability of Transgene Expression in Clonal Cell Lines of Wheat, Plant Sci., 1996, vol. 114, pp. 71–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guo.

Additional information

X. Liu and W. Jin contributed equally to this work.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Jin, W., Liu, J. et al. Transformation of wheat with the HMW-GS 1Bx14 gene without markers. Russ J Genet 47, 182–188 (2011). https://doi.org/10.1134/S1022795411010066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411010066

Keywords

Navigation