Skip to main content
Log in

Effective nonlinear GaSe crystal. Optical properties and applications

  • Laser Systems
  • Published:
Laser Physics

Abstract

We present an overview of the current state of the literature and research performed by the authors of the present paper on the experimental and theoretical results on the structural-, optical-, nonlinear optical (NLO)-properties (including two-photon absorption (TPA) and the terahertz (THz) range of spectra) and practical applications of a highly anisotropic Gallium Selenide (GaSe) semiconductor with emphasis on the ɛ-GaSe. Physical properties of ɛ-GaSe are important to researchers and designers developing different devices by using this material. This crystal possesses an outstanding NLO properties: high optical birefringence Δn ∼ 0.3 at 700 nm; high transparency range (0.7−18.0 μm) with low absorption coefficient (α ≤ 0.3 cm−1); very high nonlinear susceptibility χ(2) (d 22 ≈ 86 ± 17 pm/V, corresponding to (2.0 ± 0.4) × 10−7 esu) that is used for phase matched second harmonic generation (SHG) in a wide transparency range; high power threshold for optical damage; possibility to perform optical frequency conversion under phase-matching conditions in the near- to mid-IR and THz range of spectra, etc. The domain structure of crystal in connection with the NLO properties is discussed as studied by confocal Raman microscopy experiments. Perspectives for future research of GaSe are considered in the present article, which does not pretend to be one reflecting all existing papers on GaSe crystal and discussed subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Schlüter, Helv. Phys. Acta 45, 73 (1972).

    Google Scholar 

  2. K. Maschke and F. Levy, in Landolt-Börnstein in Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, Ed. by S. Flügge (Springer, Berlin, 1983).

    Google Scholar 

  3. E. F. Gross, B. V. Novikov, B. S. Razbirin, and L. G. Suslina, Opt. Spectrosc. 4, 364 (1959).

    ADS  Google Scholar 

  4. P. Fielding, G. Fischer, and E. Mooser, J. Phys. Chem. Solids 8, 434 (1959).

    Article  ADS  Google Scholar 

  5. Z. S. Basinski, D. B. Dove, and E. Mooser, Helv. Phys. Acta 34, 373 (1961).

    Google Scholar 

  6. R. F. Mekhtiev and L. G. Paritskii, Sov. Phys. Solid State 4, 896 (1962).

    Google Scholar 

  7. J. L. Brebner and G. Fisher, in Proc. of the Intern. Conf. on the Physics of Semiconductors, Exeter, England, 1962 (The Institute of Physics and the Phys. Soc., London, 1962), pp. 760–765; J. L. Brebner and E. Mooser, Phys. Lett. A 24, 274 (1967).

    Google Scholar 

  8. G. A. Akhundov, G. B. Abdullaev, G. D. Guseinov, R. F. Mekhtiev, and M. K. Alieva, in Proc. of the 7th Intern. Conf. on the Physics of Semiconductors, Paris, France, 1964 (Academic, New York, London, Dunod, Paris, 1964), pp. 1277–1282.

    Google Scholar 

  9. N. G. Basov, O. V. Bogdankevich, A. N. Pechenov, G. B. Abdullaev, G. A. Akhundov, and E. Y. Salaev, Sov. Phys. Dokl. 10, 329 (1965).

    ADS  Google Scholar 

  10. K. J. Dunn and F. P. Bundy, Appl. Phys. Lett. 36, 709 (1980).

    Article  ADS  Google Scholar 

  11. U. Schwarz, “Untersuchung von Drückinduzierten Phasenumwandlungen bei Valenzverbindungen und Intermetalischen Phasen mit Bindungen Zwischen Metalischen Elementen”, dem Fachbereich Chemie der Teshnischen üniversitat Darmstadt, Vorgelegte Habilitationsschrift, Darmstadt (Germany), 1998, p. 151.

    Google Scholar 

  12. M. Takumi, A. Hirata, T. Ueda, Y. Koshio, H. Nishima, and K. Nagata, Phys. Stat. Solidi B 223, 423 (2001).

    Article  ADS  Google Scholar 

  13. D. Errandonea, J. F. Sanchez-Royo, A. Segura, and A. Chevy, High Pres. Res. 16, 13 (1998).

    Article  ADS  Google Scholar 

  14. Y. Iwamura, N. Moriyama, and N. Watanabe, Jpn. J. Appl. Phys. 29, L975 (1990).

    Article  ADS  Google Scholar 

  15. Y. Iwamura, M. Moriyama, and N. Watanabe, Jpn. J. Appl. Phys. 30, L42 (1991).

    Article  ADS  Google Scholar 

  16. K. Allakhverdiev, N. Ismailov, Z. Salaeva, F. Mikalilov, A. Gulubayov, T. Mamedov, and S. Babaev, Appl. Opt. 41, 148 (2002).

    Article  ADS  Google Scholar 

  17. D. Errandonea, F. J. Manjon, J. Pelliger, A. Segura, and V. Munoz, Phys. Stat. Solidi B 211, 33 (1999).

    Article  ADS  Google Scholar 

  18. C. Manfredotti, R. Murri, and L. Vasaneli, Nucl. Instrum. Methods Phys. Res. 114, 349 (1974).

    Article  Google Scholar 

  19. C. Manfredotti, R. Murri, A. Quirni, and L. Vasaneli, Nucl. Instrum. Methods Phys. Res. 131, 457 (1975).

    Article  ADS  Google Scholar 

  20. A. Castellano, Appl. Phys. Lett. 48, 298 (1986).

    Article  ADS  Google Scholar 

  21. T. Yamazaki, H. Nakatani, and E. Sakai, in Proc. of the 3rd Workshop on Radiation Detectors and Their Uses (KEK 88-5), Ibaraki, Japan, 1988 (Nat. Lab. High Energy Phys., Ibaraki, 1988), pp. 192–195.

    Google Scholar 

  22. E. Sakai, H. Nakatani, C. Tatsuyama, and F. Takeda, IEEE Trans. Nucl. Sci. 35, 85 (1988).

    Article  ADS  Google Scholar 

  23. V. M. Arutyunyan, M. L. Dimaksyan, V. L. Elbakyan, and G. E. Grigoryan, Sov. Phys. Semicond. 23, 315 (1989).

    Google Scholar 

  24. T. Yamazaki, H. Nakatani, and N. Ikeda, Jpn. J. Appl. Phys. 32, 1857 (1993).

    Article  ADS  Google Scholar 

  25. T. Yamazaki, K. Terayama, T. Shimazaki, and H. Nakatani, Jpn. J. Appl. Phys. 36, 378 (1997).

    Article  ADS  Google Scholar 

  26. M. Balkanski, C. Julien, and J. Y. Emery, J. Power Science 26, 615 (1989).

    Article  Google Scholar 

  27. E. Bucher, Photoelectrochemistry and Photovoltaics of Layered Semiconductors (Kluwer Academic, Dordrecht, 1992).

    Google Scholar 

  28. M. Endo, C. Kim, T. Takeda, M. Ueda, and A. Miyashita, in Shinshu University, Faculty of Engineering Report, Nagano, Japan, 1997 (Shinsu University, Nagano, 1997), pp. 129–132.

    Google Scholar 

  29. K. Allakhverdiev, S. Hanna, A. Kulibekov (Gulubayov), S. Özbek, E. Gunay, and D. Huseinova, Int. J. of IR Millimeter Waves 26, 61 (2005).

    Google Scholar 

  30. E. Yu. Salaev and K. R. Allakhverdiev, Dynamic and Static Nonlinear Effects in Layered GaSe-type Crystals (Elm Publ., Baku 1993) [in Russian].

    Google Scholar 

  31. N. Fernelius, Prog. Crystal Growth Charact. 28, 275 (1994).

    Article  Google Scholar 

  32. G. L. Belenkii and V. B. Stopachinskii, Sov. Phys. Usp. 26, 497 (1983).

    Article  ADS  Google Scholar 

  33. K. R. Allakhverdiev, Pressure Induced Phase Transitions in GaSe-, TlGaSe 2 -, and CdGa 2 S 4 -type Crystals, Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  34. N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, and R. Meyer, Prog. Cryst. Growth Charact. Mater. 37, 47 (1998).

    Article  Google Scholar 

  35. K. Allakhverdiev, T. Baykara, Ş. Ellialtioǧlu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, Mater. Res. Bull. 41, 751 (2006).

    Article  Google Scholar 

  36. W. Klemm and H. U. V. Vogel, Zeitschrift für Anorganische Chemie 219, 45 (1934).

    Article  Google Scholar 

  37. J. Terhell, R. Lieth, and W. van der Vleuten, Mater. Res. Bull. 11, 577 (1975).

    Article  Google Scholar 

  38. H. Suzuki and R. Mori, Jpn. J. Appl. Phys. 13, 417 (1974).

    Article  ADS  Google Scholar 

  39. A. Beck and E. Mooser, Helv. Phys. Acta 34, 370 (1961).

    Google Scholar 

  40. E. Aulich, J. L. Brebner, and E. Mooser, Phys. Stat. Solidi 31, 129 (1969).

    Article  Google Scholar 

  41. V. L. Cardetta, A. M. Mancini, and A. Rizzo, J. Cryst. Growth 16, 183 (1972).

    Article  ADS  Google Scholar 

  42. K. Allakhverdiev, “Optical Properties and Vibrational Spectra of Layered and Chained Crystals of A 3 B 6, A 3 B 3 C 6 2 and Their Solid Solutions,” Dissertation for the Degree of Doctor of the Physical-Mathematical Sciences (Institute of Phys. Azerbaijan Acad. Sci., Baku, Azerbaijan, 1980), p. 313 [in Russian].

    Google Scholar 

  43. G. B. Abdullaev, V. B. Antonov, T. E. Mekhtiev, and E. Yu. Salaev, Sov. J. Quantum Electron. 4, 80 (1974).

    Article  Google Scholar 

  44. K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, J. Appl. Phys. 93, 3336 (2003).

    Article  ADS  Google Scholar 

  45. H. Yoshida, S. Nakashina, and A. Mitsuishi, Phys. Stat. Solidi B 59, 655 (1973).

    Article  Google Scholar 

  46. Y. Fan, M. Bauer, L. Kador, K. R. Allakhverdiev, and E. Yu. Salaev, J. Appl. Phys. B 91, 1081 (2002).

    ADS  Google Scholar 

  47. A. Polian, K. Kunc, and A. Kuhn, Solid State Commun. 19, 1079 (1976).

    Article  ADS  Google Scholar 

  48. R. Le. Toullec, M. Balkanski, J. M. Besson, and A. Kuhn, Phys. Lett. A 55, 245 (1975).

    Article  ADS  Google Scholar 

  49. M. Schlüter, J. Camassel, S. Kohn, J. P. Voitchovsky, Y. R. Shen, and M. L. Cohen, Phys. Rev. B 13, 3534 (1976).

    Article  ADS  Google Scholar 

  50. Y. Depeursinge and A. Baldereschi, Physica B 105, 324 (1981).

    Article  Google Scholar 

  51. Y. Sasaki and Y. Nishina, Phys. Rev. B 23, 4089 (1981).

    Article  ADS  Google Scholar 

  52. G. Fischer and J. L. Brebner, J. Phys. Chem. Solids 23,1363 (1962).

    Article  ADS  Google Scholar 

  53. A. Segura, J. Bouvier, M. A. Andres, F. J. Manjon, and V. Munoz, Phys. Rev. B 56, 4075 (1997).

    Article  ADS  Google Scholar 

  54. R. Fivaz and E. Mooser, Helv. Phys. Acta 38, 653 (1965).

    Google Scholar 

  55. R. Fivaz and E. Mooser, Phys. Rev. 163, 743 (1967).

    Article  ADS  Google Scholar 

  56. A. Gouskov, J. Camassel, and L. Gouskov, Prog. Cryst. Growth Charact. 5, 323 (1982).

    Article  Google Scholar 

  57. J. L. Brebner and G. Fisher, in Proc. of the Intern. Conf. on the Physics of Semiconductors, Exeter, England, 1962 (Institute of Physics and the Phys. Soc., London, 1962), pp. 760–765; J. L. Brebner and E. Mooser, Phys. Lett. A 24, 274 (1967).

    Google Scholar 

  58. W. Y. Liang, J. Phys. C: Solid State Phys. 8, 1763 (1975).

    Article  ADS  Google Scholar 

  59. P. M. Nikolic, D. Vasiljevic-Radovic, K. T. Radulovic, A. I. Bojicic, D. Lukovic, S. Savic, V. Blagojevic, S. Vujatovic, L. Lukic, and D. Urosevic, J. Phys. IV France 125, 407 (2005).

    Article  Google Scholar 

  60. T. J. Wieting, J. L. Verble, Phys. Rev. B 5, 1473 (1972).

    Article  ADS  Google Scholar 

  61. E. Finkman and A. Rizzo, Solid State Commun. 15,1841 (1974).

    Article  ADS  Google Scholar 

  62. K. Allakhverdiev, N. Mustafaev, and N. Seid-Rzaeva, Tr. J. Phys. 20, 1256 (1996).

    Google Scholar 

  63. G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, Sov. Phys. JETP Lett. 16, 90 (1972).

    ADS  Google Scholar 

  64. B. V. Beregulin, P. M. Valov, T. V. Rybakova, and I. D. Yaroshetkii, Sov. Phys. Semicond. 8, 122 (1974).

    Google Scholar 

  65. P. Kupecek, E. Batifol, and A. Kuhn, Opt. Commun. 11,291 (1974).

    Article  ADS  Google Scholar 

  66. B. V. Beregulin, P. M. Valov, T. V. Rybakova, V. M. Salmanov, and I. D. Yaroshetskii, Sov. Phys. Semicond. 9, 1481 (1975).

    Google Scholar 

  67. G. B. Abdullaev, K. R. Allakhverdiev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savelev, E. Yu. Salaev, and V. V. Smirnov, Sov. J. Quantum Electron. 5, 665 (1975).

    Article  Google Scholar 

  68. G. B. Abdullaev, L. A. Kulevskii, P. V. Nikles, A. M. Prokhorov, A. D. Savelev, and V. V. Smirnov, Sov. J. Quant. Electron. 6, 88 (1976).

    Article  Google Scholar 

  69. D. N. Nikogosyan, Sov. J. Quantum Electron. 7, 1 (1977).

    Article  Google Scholar 

  70. A. A. Bianchi, A. A. Ferrario, and M. Musci, Opt. Commun. 25, 256 (1978).

    Article  ADS  Google Scholar 

  71. A. Bianchi and M. Garbi, Opt. Commun. 30, 122 (1979).

    Article  ADS  Google Scholar 

  72. J. L. Oudar, P. J. Kupesek, and D. S. Chemla, Opt. Commun. 29, 119 (1979).

    Article  ADS  Google Scholar 

  73. N. P. Barnes, R. C. Echardt, D. G. Getemy, and L. B. Edget, IEEE J. Quantum Electron. QE-15, 1074 (1979).

    Article  ADS  Google Scholar 

  74. Yu. A. Gusev, A. V. Kirpichnikov, S. N. Konoplin, S. I. Marennikov, P. V. Nikles, Yu. N. Polivanov, A. M. Prokhorov, A. D. Savel’ev, R. Sh. Sayakov, V. V. Smirnov, and V. P. Chebotaev, Sov. Tech. Phys. Lett. 6, 541 (1980).

    Google Scholar 

  75. K. R. Allakhverdiev, R. I. Guliev, E. Yu. Salaev, and V. V. Smirnov, Sov. J. Quantum. Electron. 12, 947 (1982).

    Article  Google Scholar 

  76. G. C. Bhar, G. C. Ghosh, and P. Ghosh, IEEE J. Quantum. Electron. QE-19, 779 (1983).

    Article  ADS  Google Scholar 

  77. M. Kaschke and B. Wilhelmi, Appl. Phys. B 45, 71 (1988).

    Article  ADS  Google Scholar 

  78. J. M. Hvam and C. Dörnfeld, in Proc. of NATO ASI Series, Series B: Physica Denver, Colorado, USA, 1988 (Plenum, New York, 1988), vol. 194, pp. 233–241.

    Google Scholar 

  79. G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevsckii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Y. M. Starodumov, and N. I. Chapliev, Sov. J. Quantum Electron. 19, 494 (1989).

    Article  Google Scholar 

  80. K. L. Vodopyanov, L. A. Kulevskii, V. G. Voevodin, A. I. Gribenyukov, K. R. Allakhverdiev, and T. A. Kerimov, Opt. Commun. 83, 322 (1991).

    Article  ADS  Google Scholar 

  81. K. L. Vodopyanov, L. A. Kulevskii, A. I. Gribenyukov, and K. R. Allakhverdiev, J. Physique IV: Colloque C7, suppl. au J. Physique III 1, C7–391 (1991).

    Google Scholar 

  82. A. Selmeier, T. Dahinten, U. Plödoreder, and G. Weimann, Inst. Phys. Conf. Ser. No. l26, Sect. V, 383 (1992).

  83. K. L. Vodopyanov, J. Opt. Soc. Am. B 10, 1723 (1993).

    Article  ADS  Google Scholar 

  84. I. M. Bayanov, R. Daniels, P. Heinz, and A. Selmeier, Opt. Commun. 113, 99 (1994).

    Article  ADS  Google Scholar 

  85. G. C. Bhar, S. Das, and K. L. Vodopyanov, Appl. Phys. B 61, 187 (1995).

    Article  ADS  Google Scholar 

  86. K. L. Vodopyanov and V. G. Voevodin, Opt. Commun. 114, 333 (1995).

    Article  ADS  Google Scholar 

  87. L. Kador, D. Haarer, K. R. Allakhverdiev, and E. Yu. Salaev, Appl. Phys. Lett. 69, 731 (1996).

    Article  ADS  Google Scholar 

  88. J. M. Auerhammer and E. R. Eliel, Opt. Lett. 21, 773 (1996).

    Article  ADS  Google Scholar 

  89. L. Kador, M. Braun, K. R. Allakhverdiev, and E. Yu. Salaev, Opt. Commun. 143, 62 (1997).

    Article  ADS  Google Scholar 

  90. D. R. Suhre, N. B. Singh, and V. Balakrishna, Opt. Lett. 22, 775 (1997).

    Article  ADS  Google Scholar 

  91. M. May, S. Debrus, K. Zakrzewska, and H. Benisty, J. Opt. Soc. Am. B 14, 1048 (1997).

    Article  ADS  Google Scholar 

  92. Y. J. Ding and J. B. Khurgin, Opt. Soc. Am. B 15, 1567 (1998).

    Article  ADS  Google Scholar 

  93. N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, Progr. Cryst. Growth Charact. Mater. 37, 47 (1998).

    Article  Google Scholar 

  94. K. L. Vodopynaov, J. Opt. Soc. Am. B 16, 1579 (1999).

    Article  ADS  Google Scholar 

  95. R. S. Putnam and D. G. Lancaster, Appl. Opt. 38, 151 (1999).

    Article  Google Scholar 

  96. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1545 (2002).

    Article  Google Scholar 

  97. S. Das, C. Ghosh, S. Gangopadhyay, U. Chatterjee, G. Bhar, V. G. Voevodin, and O. G. Voevodina, J. Opt. Soc. Am. B 23, 282 (2006).

    Article  ADS  Google Scholar 

  98. S. Das, G. Ghosh, O. G. Voevodin, Yu. M. Andreev, and S. Yu. Sarkisov, Appl. Phys. B 82, 43 (2006).

    Article  ADS  Google Scholar 

  99. K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).

    Article  ADS  Google Scholar 

  100. K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, J. Appl. Phys. 98, 093515-1 (2005).

    Google Scholar 

  101. CRC Handbook of Chemistry and Physics, Ed. by R. C. Weast, D. R. Lide, M. J. Astle, and W. H. Beyer (CRC, Boca Raton, Fl., 1989). p. C–289.

    Google Scholar 

  102. Y. R. Shen, The Principles of Nonlinear Optics, Chap. 6 (Wiley, New York, 1984).

    Google Scholar 

  103. K. Allakhverdiev, J. Camassel, H. Kurz, N. Mustafaev, M. Tagyev, E. Salaev, and K. Siebert, JETP Lett. 51, 164 (1990).

    ADS  Google Scholar 

  104. K. Seibert, H. Heisel, T. Albrecht, K. Allakhverdiev, and H. Kurz, “Time-Resolved Studies of Coherent Phonon Oscillations in AIIIBVI Semiconductors Generated by Impulsive Stimulated Raman Scattering,” in Proc. of the 20th Int. Conf. Phys. Semicond., Aug. 6–10, 1990, Greece, Vol. 3, Ed. by E. M. Anastassakis and J. D. Joannopoulos (World Sci., 1990), pp. 1981–1984.

  105. H. Kurz, Inst. Phys. Conf. Ser. No. 126, Sect. IV (1992), p. 255.

  106. W. A. Kütt, W. Albrecht, and H. Kurz, IEEE J. Quantum Electron. 28, 2434 (1992).

    Article  ADS  Google Scholar 

  107. M. May, S. Debris, K. Zakrzewska, H. Benisty, and A. Chevy, J. Opt. Soc. Am. B 14, 1048 (1997).

    Article  ADS  Google Scholar 

  108. M. Kaschke, B. Wilhelmi, V. D. Egorov, H. X. Nguyen, and R. Zimmermann, Appl. Phys. B 45, 71 (1988).

    Article  ADS  Google Scholar 

  109. J. M. Hvam and C. Dörnfeld, Optical Switching in Low-Dimensional Systems, Ed. by H. Haug and L. Banyal, NATO ASI Series, Ser. B: Phys. vol. 194 (Plenum, New York, 1988), pp. 233–241.

    Google Scholar 

  110. N. P. Barnes, R. C. Eckhardt, D. J. Getemmy, and L. B. Edgett, IEEE J. Quantum Electr. QE-15, 1074 (1979).

    Article  ADS  Google Scholar 

  111. T. Ugumori, Semiconductors Probed by Ultrafast Laser Spectroscopy, Ed. by R. R. Alfano (Academic, Press, 1984), Vol. 1, pp. 109–129.

  112. K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov (Gulubayov), A. Seilmeier, and E. Yu. Salaev, Opt. Commun. 261, 60 (2006).

    Article  ADS  Google Scholar 

  113. V. Grivickas, V. Bikbajevas, K. Allakhverdiev, and J. Linnros, J. Phys.: Conf. Ser. 100, 1 (2008).

    Google Scholar 

  114. G. A. Akhundov, A. A. Agaeva, V. M. Salmanov, Yu. P. Sharonov, and I. D. Yaroshetskii, Sov. Phys. Semicond. 7, 826 (1973).

    Google Scholar 

  115. K. Allakhverdiev, F. Ismailov, L. Kador, and M. Braun, Solid State Commun. 104, 1 (1997).

    Article  ADS  Google Scholar 

  116. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1545 (2002).

    Article  Google Scholar 

  117. W. Shi and Y. J. Ding, Opt. Lett. 30, 1861 (2005).

    Article  ADS  Google Scholar 

  118. S. Ya. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, JOSA B 24, 2509 (2007).

    Article  ADS  Google Scholar 

  119. T. Tanabe, K. Suto, J. Nishizawa, T. Sasaki, H. Yasuda, and Y. Oyama, Institute of Phys. Conf. Ser.: Compound Semicond. 184, 85 (2005).

    Google Scholar 

  120. S. Fumikazu, T. Tadao, O. Yutaka, K. Tomoyuki, S. Ken, and N. Jun’ichi, J. Jpn Assoc. Cryst. Growth 33, 177 (2006).

    Google Scholar 

  121. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, Appl. Phys. Lett. 85, 3360 (2004).

    Article  ADS  Google Scholar 

  122. A. N. MacInnes, W. M. Cleaver, A. R. Barron, M. B. Power, and A. F. Hepp, Adv. Mater. Opt. Electron. 1, 229 (1992).

    Article  Google Scholar 

  123. S. L. Stoll, E. G. Gillan, and A. R. Barron, Chem. Vap. Deposition 2, 182 (1996).

    Article  Google Scholar 

  124. K. Allakhverdiev, J. Hagen, and Z. Salaeva, Phys. Stat. Solidi A 163, 212 (1997).

    Article  Google Scholar 

  125. V. Chikan and D. F. Kelley, Nano Lett. 2, 141 (2002).

    Article  ADS  Google Scholar 

  126. V. Chikan and D. F. Kelley, J. Chem. Phys. 117, 8944 (2002).

    Article  ADS  Google Scholar 

  127. H. Tu, V. Chikan, and D. F. Kelley, J. Phys. Chem. B 107, 10389 (2003).

    Article  Google Scholar 

  128. H. Tu, Y. V. Chikan, and D. F. Kelley, J. Phys. Chem. B 108, 4701 (2004).

    Article  Google Scholar 

  129. H. Tu, K. Mogyorosi, and D. F. Kelley, J. Chem. Phys. 122, 044709-1 (2005).

    Google Scholar 

  130. T. Kawamura, K. Matsuishi, D. S. Onari, K. Allakhverdiev, F. Gashimzade, and D. Guseynova, in Proc. of the Intern. Conf. on Phys. Semicond., July 24–28, 2006, Vienna, Austria.

  131. Y. Fan, T. Schittkowski, M. Bauer, L. Kador, K. Allakhverdiev, and E. Yu. Salaev, J. Luminescence 98, 7 (2002).

    Article  ADS  Google Scholar 

  132. C. Perez Leon, L. Kador, K. R. Allakhverdiev, T. Baykara, and A. A. Kaya, J. Appl. Phys. 98, 103103-1 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Allakhverdiev.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allakhverdiev, K.R., Yetis, M.Ö., Özbek, S. et al. Effective nonlinear GaSe crystal. Optical properties and applications. Laser Phys. 19, 1092–1104 (2009). https://doi.org/10.1134/S1054660X09050375

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09050375

PACS numbers

Navigation