Skip to main content
Log in

Assessment of the calibration curve for transmittance pulse-oximetry

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

Optical/laser modalities provide a broad variety of practical solutions for clinical diagnostics and therapy in a range from imaging of single cells and molecules to non-invasive biopsy of specific biological tissues and organs tomography. Near-infrared transmittance pulse oximetry with laser diodes is the accepted standard in current clinical practice and widely used for noninvasive monitoring of oxygen saturation in arterial blood hemoglobin. Conceptual design of practical pulse oximetry systems requires careful selection of various technical parameters, including intensity, wavelength, beam size and profile of incident laser radiation, size, numerical aperture of the detector, as well as a clear understanding of how the spatial and temporal structural alterations in biological tissues can be linked with and can be distinguished by variations of these parameters. In current letter utilizing state-of-the-art NVIDEA CUDA technology, a new object oriented programming paradigm and on-line solutions we introduce a computational tool applied for human finger transmittance spectra simulation and assessment of calibration curve for near-infrared transmitted pulseoximetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Hayes and C. E. Hahn, Non Invasive Cardiovascular Monitoring (BMJ Publ., 1997).

  2. M. Bonesi, S. Proskurin, and I. Meglinski, Laser Phys. 20, 891 (2010).

    Article  ADS  Google Scholar 

  3. G. P. Petrova, A. V. Boiko, K. V. Fedorova, I. A. Sergeeva, N. V. Sokol, and T. N. Tichonova, Laser Phys. 19, 1303 (2009).

    Article  ADS  Google Scholar 

  4. T. I. Syrejshchikova, Yu. A. Gryzunov, N. V. Smolina, A. A. Komar, M. G. Uzbekov, E. J. Misionzhnik, and N. M. Maksimova, Laser Phys. 20, 1074 (2010).

    Article  ADS  Google Scholar 

  5. A. N. Korolevich and I. V. Meglinski, Bioelectrochemistry 52, 223 (2000).

    Article  Google Scholar 

  6. M. Meinke, M. Schröder, R. Schütz, U. Netz, J. Helfmann, K. Dörschel, A. Pries, and G. Müller, Laser Phys. Lett. 4, 66 (2007).

    Article  ADS  Google Scholar 

  7. V. Kalchenko, K. Ziv, Y. Addadi, N. Madar, I. Meglinski, M. Neeman, and A. Harmelin, Laser Phys. Lett. 7, 603 (2010).

    Article  ADS  Google Scholar 

  8. Y. Mendelson, Clin. Chem. 38, 1601 (1992).

    Google Scholar 

  9. J. W. Severinghaus, P. B. Astrup, and J. F. Murray, Am. J. Respir. Crit. Care Med. 4, S114 (1998).

    Google Scholar 

  10. I. Fine, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, Ed. by V. V. Tuchin (Taylor Francis, CRC, 2008), pp. 95–138.

  11. M. A. Franceschini, D. A. Boas, A. Zourabian, S. G. Diamond, S. Nadgir, D. W. Lin, J. B. Moore, and S. Fantini, J. Appl. Phys. 92, 372 (2002).

    Google Scholar 

  12. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

    Google Scholar 

  13. I. V. Meglinski, D. Y. Chunnakov, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, Laser Phys. 13, 65 (2003).

    Google Scholar 

  14. S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, Laser Phys. 14, 886 (2004).

    Google Scholar 

  15. E. Berrocal, D. Sedarsky, M. Paciaroni, I. V. Meglinski, and M. A. Linne, Opt. Express 15, 10649 (2007).

    Article  ADS  Google Scholar 

  16. I. V. Meglinski, V. L. Kuzmin, D. Y. Churmakov, and D. A. Greenhalgh, Proc. R. Soc. A 461, 43 (2005).

    Article  ADS  Google Scholar 

  17. V. L. Kuzmin, I. V. Meglinski, and D. Y. Churmakov, J. Exp. Theor. Phys. 101, 22 (2005).

    Article  ADS  Google Scholar 

  18. E. Berrocal, D. Sedarsky, M. Paciaroni, I. V. Meglinski, and M. A. Linne, Opt. Express 17, 13792 (2009).

    Article  ADS  Google Scholar 

  19. E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, Laser Phys. Lett. 3, 464 (2006).

    Article  ADS  Google Scholar 

  20. I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, and D. A. Greenhalgh, Laser Phys. Lett. 1, 387 (2004).

    Article  ADS  Google Scholar 

  21. I. V. Meglinski and S. J. Matcher, Opt. Spectrosc. 91, 654 (2001).

    Article  ADS  Google Scholar 

  22. I. V. Meglinski, Quantum Electron. 31, 1101 (2001).

    Article  ADS  Google Scholar 

  23. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, J. Phys. D: Appl. Phys. 36, 1722 (2003).

    Article  ADS  Google Scholar 

  24. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, J. Biomed. Opt. 9, 339 (2004).

    Article  ADS  Google Scholar 

  25. I. V. Meglinski, M. Kirillin, V. L. Kuzmin, and R. Myllyla, Opt. Lett. 33, 1581 (2008).

    Article  ADS  Google Scholar 

  26. M. Kirillin, I. V. Meglinski, E. Sergeeva, V. L. Kuzmin, and R. Myllyla, Opt. Express 18, 21714 (2010).

    Article  ADS  Google Scholar 

  27. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, Phys. Med. Biol. 47, 4271 (2002).

    Article  Google Scholar 

  28. J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming (Addison-Wesley, 2010).

  29. D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A hands-on Approach (MK Publishers, 2010).

  30. A. Tanenbaum and A. Woodhull, Operating Systems Design and Implementation, 3rd ed. (Prentice Hall Software Series, 2008).

  31. M. Russinovich, D. Solomon, and A. Ionescu, Microsoft Windows Internals, 5th ed. (Microsoft Press, 2009).

  32. W. Stallings, Operating Systems Internals and Design Principles, 5th ed. (Prentice Hall, 2004).

  33. CUDA Programming Guide 3.2 (NVIDIA Corporation, 2010).

  34. CUBLAS Library (NVIDIA Corporation, 2010).

  35. CUFFT Library (NVIDIA Corporation, 2010).

  36. CURAND Library, (NVIDIA Corporation, 2010).

  37. L. Shklar and R. Rosen, Web Application Architecture: Principles, Protocols, and Practices (Wiley, 2009).

  38. M. MacDonald, A. Freeman, and M. Szpuszta, Pro ASP.NET 4 in C# 2010, 4th ed. (APRESS, 2010).

  39. L. Moroney, Microsoft Silverlight 4 Step by Step (Microsoft Press, 2010).

  40. N. Pathak, Pro WCF 4: Practical Microsoft SOA Implementation (APRESS, 2011).

  41. M. MacDonald, Pro WPF in C# 2010: Windows Presentation Foundation in. NET4 (APRESS, 2010).

  42. http://karen.net.nz/home/.

  43. V. L. Kuzmin and I. V. Meglinski, Opt. Commun. 273, 307 (2007).

    Article  ADS  Google Scholar 

  44. D. Chorvat, Jr. and A. Chorvatova, Laser Phys. Lett. 6, 175 (2009).

    Article  ADS  Google Scholar 

  45. A. V Ivanov, V. D. Rumyantseva, K. S. Shchamkhalov, and I. P. Shilov, Laser Phys. 20, 2056 (2010).

    Article  ADS  Google Scholar 

  46. Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).

    Article  Google Scholar 

  47. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 (2011).

    Article  ADS  Google Scholar 

  48. P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, Phys. Med. Biol. 55, 3777 (2010).

    Article  Google Scholar 

  49. M. Bonesi, S. Matcher, and I. Meglinski, Laser Phys. 20, 1491 (2010).

    Article  ADS  Google Scholar 

  50. A. Lemelle, B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, Laser Phys. Lett. 6, 71 (2009).

    Article  ADS  Google Scholar 

  51. H. Ullah, M. Atif, S. Firdous, M. S. Mehmood, M. Ikram, C. Kurachi, C. Grecco, G. Nicolodelli, and V. S. Bagnato, Laser Phys. Lett. 7, 889 (2010).

    Article  Google Scholar 

  52. O. Samek, J. F. M. Al-Marashi, and H. H. Telle, Laser Phys. Lett. 7, 378 (2010).

    Article  ADS  Google Scholar 

  53. I. M. Vlasova and A. M. Saletsky, Laser Phys. 20, 1844 (2010).

    Article  ADS  Google Scholar 

  54. I. V. Meglinski, A. N. Korolevich, and V. V. Tuchin, Crit. Rev. Biomed. Eng. 29, 535 (2001).

    Google Scholar 

  55. A. Bratchenia, R. Molenaar, and R. P. H. Kooyman, Laser Phys. 21, 601 (2011).

    Article  ADS  Google Scholar 

  56. Y. L. Kuznetsov, V. V. Kalchenko, and I. V. Meglinski, Quantum Electron. 41, 308 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Meglinski.

Additional information

Original Text © Astro, Ltd.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doronin, A., Fine, I. & Meglinski, I. Assessment of the calibration curve for transmittance pulse-oximetry. Laser Phys. 21, 1972–1977 (2011). https://doi.org/10.1134/S1054660X11190078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11190078

Keywords

Navigation