Skip to main content
Log in

Self-assembly of germanium islands under pulsed irradiation by a low-energy ion beam during heteroepitaxy of Ge/Si(100) structures

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of pulsed irradiation by a low-energy (50–250 eV) ion beam with a pulse duration of 0.5 s on the nucleation and growth of three-dimensional germanium islands during molecular-beam heteroepitaxy of Ge/Si(100) structures is investigated experimentally. It is revealed that, at specific values of the integrated ion flux (less than 1012 cm−2), pulsed ion irradiation leads to an increase in the density of islands and a decrease in their mean size and size dispersion as compared to those obtained in the case of heteroepitaxy without ion irradiation. The observed phenomena are explained in the framework of the proposed model based on the concept of a change in the diffusion mobility of adatoms due to the instantaneous generation of interstitial atoms and vacancies under pulsed ion irradiation. It is assumed that the vacancies and interstitial atoms give rise to an additional surface strain responsible for the change in the binding energy of the adatoms. Under certain conditions, these processes bring about the formation of centers of preferential nucleation of three-dimensional islands at the places where the ions impinge on the surface. The model accounts for the possibility of annihilating vacancies and interstitial atoms on the surface of the growing layer. It is demonstrated that the results obtained from the Monte Carlo calculations based on the proposed model are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).

    Article  ADS  Google Scholar 

  2. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 3 (1998) [Semiconductors 32, 1 (1998)].

    Google Scholar 

  3. K. Brunner, Rep. Prog. Phys. 65, 27 (2002).

    Article  ADS  Google Scholar 

  4. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998) [Semiconductors 32, 343 (1998)].

    Google Scholar 

  5. A. I. Yakimov, A. V. Dvurechenskiĭ, N. P. Stepina, et al., Zh. Éksp. Teor. Fiz. 119, 574 (2001) [JETP 92, 500 (2001)].

    Google Scholar 

  6. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskiĭ, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1281 (2000) [Semiconductors 34, 1229 (2000)].

    Google Scholar 

  7. C. S. Peng, Q. Huang, W. Q. Cheng, et al., Appl. Phys. Lett. 72, 2541 (1998).

    Article  ADS  Google Scholar 

  8. A. A. Shklyaev, M. Shibata, and M. Ichikawa, Phys. Rev. B 62, 1540 (2000).

    Article  ADS  Google Scholar 

  9. A. Barski, M. Derivaz, J. L. Rouvière, and D. Buttard, Appl. Phys. Lett. 77, 3541 (2000).

    Article  ADS  Google Scholar 

  10. A. I. Nikiforov, V. V. Ul’yanov, O. P. Pchelyakov, et al., Fiz. Tverd. Tela (St. Petersburg) 46, 80 (2004) [Phys. Solid State 46, 77 (2004)].

    Google Scholar 

  11. N. V. Vostokov, Yu. N. Drozdov, Z. F. Krasil’nik, et al., Fiz. Tverd. Tela (St. Petersburg) 47, 29 (2005) [Phys. Solid State 47, 26 (2005)].

    Google Scholar 

  12. J. Zhu, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 73, 620 (1998).

    Article  ADS  Google Scholar 

  13. J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).

    Article  ADS  Google Scholar 

  14. A. V. Dvurechenskii, A. I. Yakimov, V. A. Volodin, et al., in Proceedings of 13th International Symposium on Nanostructures: Physics and Technology (St. Petersburg, 2005), p. 244.

  15. A. I. Yakimov, A. V. Dvurechenskii, V. A. Volodin, et al., Phys. Rev. B 72, 115318 (2005).

    Google Scholar 

  16. A. V. Dvurechenskiĭ, V. A. Zinov’ev, and Zh. V. Smagina, Pis’ma Zh. Éksp. Teor. Fiz. 74, 296 (2001) [JETP Lett. 74, 267 (2001)].

    Google Scholar 

  17. A. V. Dvurechenskii, J. V. Smagina, V. A. Zinovyev, et al., Surf. Coat. Technol. 196, 25 (2005).

    Article  Google Scholar 

  18. A. V. Dvurechenskii, J. V. Smagina, V. A. Armbrister, et al., in Quantum Dots: Fundamentals, Applications, and Frontiers, Ed. by B. A. Joyce, P. C. Kelires, A. G. Naumovets, and D. D. Vvedensky (Kluwer, Dordrecht, 2005), p. 135.

    Chapter  Google Scholar 

  19. J. Tersoff, C. Teichert, and M. G. Lagally. Phys. Rev. Lett. 76, 1675 (1996).

    Article  ADS  Google Scholar 

  20. P. Kratzer, E. Penev, and M. Scheffler, Appl. Phys. A 75, 79 (2002).

    Article  ADS  Google Scholar 

  21. L. Huang, Feng Liu, and X. G. Gong, Phys. Rev. B 70, 155320 (2004).

  22. P. N. Keating, Phys. Rev. 145, 637 (1966).

    Article  ADS  Google Scholar 

  23. V. A. Il’ina and P. K. Silaev, Numerical Methods for Theoretical Physicists (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2003), p. 132 [in Russian].

    Google Scholar 

  24. Sh. Clarke and D. D. Vvedensky, Phys. Rev. B 37, 6559 (1988).

    Article  ADS  Google Scholar 

  25. M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Phys. Rev. B 55, 14279 (1997).

  26. L. Fedina, O. I. Lebedev, G. Van Tendeloo, et al., Phys. Rev. B 61, 10336 (2000).

  27. A. V. Dvurechenskiĭ, Zh. V. Smagina, V. A. Zinov’ev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 79, 411 (2004) [JETP Lett. 79, 333 (2004)].

    Google Scholar 

  28. K.-H. Heinig, D. Stock, H. Boettger, et al., Mater. Res. Soc. Symp. Proc. 316, 1035 (1994).

    Google Scholar 

  29. V. A. Zinovyev, L. N. Aleksandrov, A. V. Dvurechenskii, et al., Thin Solid Films 241, 167 (1994).

    Article  Google Scholar 

  30. M. B. Guseva, Soros. Obraz. Zh., No. 10, 106 (1998).

  31. L. I. Fedina, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 1120 (2001) [Semiconductors 35, 1072 (2001)].

    Google Scholar 

  32. V. A. Markov, O. P. Pchelyakov, L. V. Sokolov, et al., Poverkhnost, No. 4, 70 (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Smagina.

Additional information

Original Russian Text © J.V. Smagina, V.A. Zinovyev, A.V. Nenashev, A.V. Dvurechenskiĭ, V.A. Armbrister, S.A. Teys, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 593–604.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smagina, J.V., Zinovyev, V.A., Nenashev, A.V. et al. Self-assembly of germanium islands under pulsed irradiation by a low-energy ion beam during heteroepitaxy of Ge/Si(100) structures. J. Exp. Theor. Phys. 106, 517–527 (2008). https://doi.org/10.1134/S1063776108030114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030114

PACS numbers

Navigation