Skip to main content
Log in

Peculiarities of the formation and properties of light-emitting structures based on ion-synthesized silicon nanocrystals in SiO2 and Al2O3 matrices

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A comprehensive comparative study of SiO2 and Al2O3 oxide layers with Si nanocrystals formed by Si+ ion implantation and high-temperature annealing has been performed. Information on morphology, phase composition, structure, and luminescent properties of ensembles of ion-synthesized silicon nanocrystals has been obtained using confocal Raman microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electron paramagnetic resonance, and photoluminescence. It has been found that the peculiarities of the formation of nanocrystals, the distribution of nanocrystals over the depth of the implanted layer, the structure, and the character of chemical bonds are similar for both types of oxide matrices; however, the photoluminescence in the wavelength range 600–1000 nm, which is caused by the nanocrystals in the Al2O3 matrix, has been observed only in the case of the formation of SiO2 shells around the Si nanocrystals. The surface oxidation of the Si nanocrystals, which is necessary for the formation of SiO2 shells, is possible due to the presence of excess oxygen in the Al2O3 matrix (the case of Si implantation into the deposited Al2O3 film), as well as due to the inflow of oxygen from the annealing atmosphere (the case of Si implantation into sapphire). In order to verify the quantum-confinement mechanism of luminescence, available data on the temperature dependence of the photoluminescence intensity have been analyzed. An analysis of the mechanisms of charge transfer and electroluminescence excitation in diode structures based on thin ion-synthesized layers with silicon nanocrystals has also been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley, Weinheim, 2010).

    Google Scholar 

  2. T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoli, Y. Kurata, and S. Hasegawa, J. Appl. Phys. 83, 2228 (1998).

    Article  ADS  Google Scholar 

  3. S. Takeoka, M. Fujii, and S. Hayashi, Phys. Rev. B: Condens. Matter 62, 16820 (2000).

    Article  ADS  Google Scholar 

  4. T. Shimizu-Iwayama, S. Nakao, and K. Saitoh, Appl. Phys. Lett. 65, 1814 (1994).

    Article  ADS  Google Scholar 

  5. B. Barrido Fernandez, M. Lopez, C. Garcia, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 91, 798 (2002).

    Article  ADS  Google Scholar 

  6. D. I. Tetelbaum, O. N. Gorshkov, A. P. Kasatkin, A. N. Mikhaylov, A. I. Belov, D. M. Gaponova, and S. V. Morozov, Phys. Solid State 47(1), 17 (2005).

    Article  ADS  Google Scholar 

  7. A. Sa’ar, J. Nanophotonics 3, 032501 (2009).

    Article  ADS  Google Scholar 

  8. B. Garrido, M. Lopez, A. Perez-Rodriguez, C. Garcia, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, Nucl. Instrum. Methods Phys. Res., Sect. B 216, 213 (2004).

    Article  ADS  Google Scholar 

  9. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).

    Article  ADS  Google Scholar 

  10. S. Yerci, U. Serincan, I. Dogan, S. Tokay, M. Genisel, A. Aydinli, and R. Turan, J. Appl. Phys. 100(7), 074301 (2006).

    Article  ADS  Google Scholar 

  11. D. I. Tetelbaum, A. N. Mikhaylov, A. I. Belov, A. V. Ershov, E. A. Pitirimova, S. M. Plankina, V. N. Smirnov, A. I. Kovalev, D. L. Vainshtein, R. Turan, S. Yerci, T. G. Finstad, and S. Foss, Phys. Solid State 51(2), 409 (2009).

    Article  ADS  Google Scholar 

  12. L. Bi and J. Y. Feng, J. Lumin. 121, 95 (2006).

    Article  Google Scholar 

  13. P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, J. Phys.: Condens. Matter 5, L91 (1993).

    Article  ADS  Google Scholar 

  14. G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, Appl. Phys. A: Mater. Sci. Process. 74, 1 (2002).

    Article  ADS  Google Scholar 

  15. B. Y. Park, S. Lee, K. Park, C. H. Bae, and S. M. Park, J. Appl. Phys. 107, 014314 (2010).

    Article  ADS  Google Scholar 

  16. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, J. Lumin. 130(4), 631 (2010).

    Article  Google Scholar 

  17. E. S. Demidov, N. E. Demidova, V. V. Karzanov, K. A. Markov, and V. V. Sdobnyakov, Phys. Solid State 51(10), 2007 (2009).

    Article  ADS  Google Scholar 

  18. D. I. Tetelbaum, A. N. Mikhaylov, V. K. Vasiliev, A. I. Belov, A. I. Kovalev, D. L. Wainstein, Yu. A. Mendeleva, T. G. Finstad, S. Foss, Y. Golan, and A. Osherov, Surf. Coat. Technol. 203, 2658 (2009).

    Article  Google Scholar 

  19. A. F. Zatsepin, Phys. Solid State 52(6), 1176 (2010).

    Article  ADS  Google Scholar 

  20. M. Ya. Vakakh, V. A. Yukhimchuk, V. Ya. Bratus’, A. A. Konchits, P. L. F. Hemment, and T. Komoda, J. Appl. Phys. 85, 168 (1999).

    Article  ADS  Google Scholar 

  21. B. D. Evans, G. J. Pogatshnik, and Y. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 91, 258 (1994).

    Article  ADS  Google Scholar 

  22. D. Barba, F. Martin, and G. G. Ross, Nanotechnology 19, 115707 (2008).

    Article  ADS  Google Scholar 

  23. J. F. Ziegler, J. Appl. Phys. 85, 1249 (1999).

    Article  ADS  Google Scholar 

  24. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, Appl. Phys. Lett. 69, 200 (1996).

    Article  ADS  Google Scholar 

  25. J. Macia, E. Martin, A. Perez-Rodriguez, J. Jimenez, J. R. Morante, B. Aspar, and J. Margail, J. Appl. Phys. 82, 3730 (1997).

    Article  ADS  Google Scholar 

  26. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  27. Amorphous Semiconductors, Ed. by M. Brodsky (Springer, Heidelberg, 1979; Mir, Moscow, 1982).

    Google Scholar 

  28. M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998).

    Article  ADS  Google Scholar 

  29. J. Heitmann, F. Muller, L. Yi, M. Zacharias, D. Kovalev, and F. Eichhorn, Phys. Rev. B: Condens. Matter 69, 195309 (2004).

    Article  ADS  Google Scholar 

  30. J. Wang, M. Righini, A. Gnoli, S. Foss, T. Finstad, U. Serincan, and R. Turan, Solid State Commun. 147, 461 (2008).

    Article  ADS  Google Scholar 

  31. S. Kück, Appl. Phys. B: Lasers Opt. 72, 515 (2001).

    Article  ADS  Google Scholar 

  32. W. R. Harrell and J. Frey, Thin Solid Films 352, 195 (1999).

    Article  ADS  Google Scholar 

  33. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, New Jersey, United States, 2007).

    Google Scholar 

  34. M. Kulakci, U. Serincan, and R. Turan, Semicond. Sci. Technol. 21, 1527 (2006).

    Article  ADS  Google Scholar 

  35. O. Jambois, A. Vila, P. Pellegrino, J. Carreras, A. Perez-Rodriguez, B. Garrido, C. Bonafos, and G. BenAssayag, J. Lumin. 121, 356 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Tetelbaum.

Additional information

Original Russian Text © A.N. Mikhaylov, A.I. Belov, A.B. Kostyuk, I.Yu. Zhavoronkov, D.S. Korolev, A.V. Nezhdanov, A.V. Ershov, D V. Guseinov, T.A. Gracheva, N.D. Malygin, E.S. Demidov, D.I. Tetelbaum, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 2, pp. 347–359.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhaylov, A.N., Belov, A.I., Kostyuk, A.B. et al. Peculiarities of the formation and properties of light-emitting structures based on ion-synthesized silicon nanocrystals in SiO2 and Al2O3 matrices. Phys. Solid State 54, 368–382 (2012). https://doi.org/10.1134/S1063783412020175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412020175

Keywords

Navigation