Skip to main content
Log in

Nonlinear ionic pulses along microtubules

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.A. Amos, Trends Cell Biol. 5, 48 (1995)

    Article  Google Scholar 

  2. G. Matsumoto, M. Ishikawa, A. Tasaki, H. Murofushi, H. Sakai, J. Membr. Biol. 77, 77 (1989)

    Google Scholar 

  3. P.K. Hepler, Plant Cell 17, 2142 (2005)

    Article  Google Scholar 

  4. D.H. Chang, P. Wadsworth, P.K. Hepler, J. Cell Sci. 102, 79 (1992)

    Google Scholar 

  5. L. Matsson, J. Biol. Phys. 31, 303 (2005)

    Article  Google Scholar 

  6. L. Matsson, J. Phys.: Condens. Matter 21, 502101 (2009)

    Article  Google Scholar 

  7. E. Nogales, H.W. Wang, Curr. Opin. Cell Biol. 18, 179 (2006)

    Article  Google Scholar 

  8. H. Freedman, V. Rezania, A. Priel, E. Carpenter, S.Y. Noskov, J.A. Tuszynski, Phys. Rev. E 81, 051912 (2010)

    Article  ADS  Google Scholar 

  9. J.F. Diaz, I. Barasoain, J.M. Andren, J. Biol. Chem. 278, 8407 (2003)

    Article  Google Scholar 

  10. M.V. Satarić, D.I. Ilić, N. Ralević, J.A. Tuszynski, Eur. Biophys. J. 38, 637 (2009)

    Article  Google Scholar 

  11. M.V. Satarić, D. Sekulić, M. Zivanov, J. Comput. Theor. Nanosci. 7, 2281 (2010)

    Article  Google Scholar 

  12. Z.S. Siwy, M.R. Powell, A. Petrov, E. Kalman, C. Trantmann, R.S. Eisenberg., Nano Lett. 6, 1729 (2006)

    Article  ADS  Google Scholar 

  13. W. Im, B. Roux, J. Mol. Biol. 322, 851 (2002)

    Article  Google Scholar 

  14. L. Serrano, J. de la Torre, R.B. Maccioni, Y. Avila, Biochemistry 23, 4675 (1984)

    Article  Google Scholar 

  15. M.V. Satarić, J.A. Tuszynski, Phys. Rev. E 67, 011901 (2003)

    Article  ADS  Google Scholar 

  16. N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Proc. Natl. Acad. Sci. U.S.A. 98, 10037 (2001)

    Article  ADS  Google Scholar 

  17. J.A. Tuszynski, J.A. Brown, E. Crowford, E.J. Carpenter, M.L.A. Nip, J.M. Dixon, M.V. Satarić, Math. Comput. Modell. 41, 1055 (2005)

    Article  MATH  Google Scholar 

  18. G.S. Manning, Rev. Biophys. 2, 179 (1978)

    Article  Google Scholar 

  19. J.A. Tuszynski, A. Priel, J.A. Brown, H.F. Cantiello, J.M. Dixon, Nano and Molecular Electronics Handbook, Electronic and Ionic Conductivities of Microtubules and Actin Filaments: Their Consequences for Cell Signaling and Applications to Bioelectronics (Taylor and Francis, London, 2007)

  20. A. Priel, J.A. Tuszynski, H. Cantielo, Molecular Biology of the Cell, Ionic Waves Propagation Along the Dendritic Cytoskeleton as a Signaling Mechanism (Elsevier, 2006)

  21. A. Priel, J.A. Tuszynski, EPL 83, 68004 (2008)

    Article  ADS  Google Scholar 

  22. J.A. Tuszynski, S. Portet, J.M. Dixon, C. Luxford, H.F. Cantiello, Biophys. J. 86, 1890 (2004)

    Article  ADS  Google Scholar 

  23. A. Priel, A.J. Ramos, J.A. Tuszynski, H.F. Contiello, Biophys. J. 90, 4639 (2006)

    Article  ADS  Google Scholar 

  24. B. O'Shanghnessy, Q. Yang, Phys. Rev. Lett. 94, 048302 (2005)

    Article  ADS  Google Scholar 

  25. I. Minoura, E. Muto, Biophys. J. 90, 3739 (2006)

    Article  ADS  Google Scholar 

  26. C. Lin, H.F. Cantiello, Biophys. J. 65, 1371 (1993)

    Article  Google Scholar 

  27. K. Wang, W.J. Rappel, H. Levine, Phys. Biol. 1, 27 (2004)

    Article  ADS  Google Scholar 

  28. S. Maxon, J. Viecelli, Phys. Rev. Lett. 32, 4 (1974)

    Article  ADS  Google Scholar 

  29. S. Maxon, J. Viecelli, Phys. Fluids 17, 1614 (1974)

    Article  ADS  Google Scholar 

  30. T. Yagy, J. Phys. Soc. Jpn. 50, 2737 (1981)

    Article  ADS  Google Scholar 

  31. J.A. Tuszynski, S. Hameroff, M.V. Satarić, B. Tripisova, M.L.A. Nip, J. Theor. Biol. 174, 371 (1995)

    Article  Google Scholar 

  32. L.J. Gagliardi, J. Electrostat. 54, 219 (2002)

    Article  Google Scholar 

  33. T. Duke, J. Phys.: Condens. Matter 15, S1747 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Sekulić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekulić, D.L., Satarić, B.M., Tuszynski, J.A. et al. Nonlinear ionic pulses along microtubules. Eur. Phys. J. E 34, 49 (2011). https://doi.org/10.1140/epje/i2011-11049-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11049-0

Keywords

Navigation